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Abstract 
This study evaluated the performance of the U-Net architecture for identifying informal 
settlements in high-resolution orthoimagery, using manually annotated masks as 
reference. Models trained with and without data augmentation were compared. The 
model with data augmentation achieved better performance in terms of IoU, F1-Score, 
and Precision, while the model without augmentation obtained higher Recall, 
highlighting the trade-off between sensitivity and false-positive control. Despite 
challenges related to small areas and low visual contrast, the results confirm the 
potential of U-Net for mapping informal settlements. 

Keywords:​ favela, orthoimage, deep learning, urban planning, geotechnologies 

Resumo 
Este estudo avaliou o desempenho da arquitetura U-Net na identificação de favelas em 
ortoimagens de alta resolução, utilizando máscaras manuais como referência. Foram 
comparados modelos treinados com e sem data augmentation. O modelo com data 
augmentation apresentou melhor desempenho em IoU, F1-Score e Precisão, enquanto 
o modelo sem augmentation obteve maior Revocação, evidenciando o trade-off entre 
sensibilidade e controle de falsos positivos. Apesar das dificuldades em áreas 
pequenas e de baixo contraste visual, os resultados confirmam o potencial da U-Net 
para o mapeamento de assentamentos precários. 

Palavras-chave:​ favela, ortoimagem, deep learning, planejamento urbano, geotecnologias 

Resumen 
Este estudio evaluó el desempeño de la arquitectura U-Net en la identificación de 
asentamientos informales en ortoimágenes de alta resolución, utilizando máscaras 
anotadas manualmente como referencia. Se compararon modelos entrenados con y sin 
data augmentation. El modelo con aumento de datos presentó un mejor desempeño en 
términos de IoU, F1-Score y Precisión, mientras que el modelo sin augmentation 
obtuvo una mayor Revocación, evidenciando el trade-off entre sensibilidad y control de 
falsos positivos. A pesar de las dificultades asociadas a áreas pequeñas y de bajo 
contraste visual, los resultados confirman el potencial de la U-Net para el mapeo de 
asentamientos informales. 

Palabras clave:​ favela, ortoimagen, deep learning, planificación urbana, geotecnologías 



1​ Introduction 
Accelerated and often disorderly urban growth poses increasing challenges to city 
management, compromising sustainable development. According to the World 
Cities Report (UN BRASIL, 2022), the global urban population is expected to 
increase from 56% in 2021 to 68% by 2050. 
In Brazil, urbanization has historically been associated with the expansion of 
precarious settlements, a result of the absence of effective public policies and the 
lack of access to adequate housing and infrastructure. In Rio de Janeiro, the 
process of removing tenement housing (cortiços) in the late 19th century led families 
to occupy hills and peripheral areas, giving rise to the first favelas (Ling, 2018; 
Marins, 1998). 
Given the global scale of urbanization, the UN's 2030 Agenda established the 17 
Sustainable Development Goals (SDGs), among which SDG 11 – Sustainable Cities 
and Communities aims to "make cities and human settlements inclusive, safe, 
resilient and sustainable," envisioning the improvement and urbanization of slums 
by 2030 (UN BRASIL, 2023). One of the main challenges in achieving this goal is 
the identification and continuous monitoring of precarious settlements, which is 
essential for urban planning and the formulation of public policies. 
Traditionally, this information is obtained from demographic censuses, conducted 
every ten years, which limits the tracking of transformations in the intercensal 
period. In this context, the use of satellite imagery and artificial intelligence 
techniques emerges as a promising alternative, allowing for the identification, 
mapping, and monitoring of favelas in a more agile and precise manner. 
Remote sensing has been widely used for identifying and monitoring informal 
settlements, leveraging satellite images of different spatial and temporal resolutions 
in diverse urban contexts. Studies demonstrate that spectral, textural, geometric, 
and morphological characteristics extracted from these images allow for the 
distinction between formal and informal areas, especially when combined with digital 
image processing and machine learning techniques (Kemper et al., 2015; 
Alrasheedi et al., 2021; Cinnamon; Noth, 2023). 
Traditional approaches, such as object-based analysis and classical machine 
learning algorithms, yield good results, but they require manual feature extraction 
and selection, as well as specific adjustments for each urban context (Ghaffarian; 
Emtehani, 2021; Oliveira et al., 2023). In recent years, methods based on deep 
learning, especially convolutional neural networks and semantic segmentation 
models, have become established as the state of the art in satellite image analysis, 
demonstrating a greater capacity to capture the morphological complexity and 
spatial heterogeneity characteristic of favelas (Wurm et al., 2019; Maiya; Babu, 
2018; Lu et al., 2021; Abascal et al., 2022). These approaches expand the potential 
for continuous mapping and monitoring of informal settlements, providing more 
accurate inputs for urban planning and public policy formulation. 
The present work seeks to contribute to this effort by applying deep learning models 
to satellite images for identifying and monitoring the dynamics of favelas in the city 
of Rio de Janeiro. 

2​ Materials and Methods 

2.1​Identification and Delimitation of Areas of Interest 
The study used RGBI orthoimages with a spatial resolution of 15 cm (Ground 
Sample Distance - GSD), acquired during a photogrammetric flight in April 2024 by 
the UltraCam Osprey 4.1 aerophotogrammetric camera. The data were provided by 
the Municipal Institute of Urbanism Pereira Passos (IPP), an agency of the City of 
Rio de Janeiro's Municipal Government. The orthoimages are composed of the red 
(Red), green (Green), blue (Blue), and near-infrared (Near Infrared - NIR) spectral 
bands. 
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The images are in the EPSG:31983 coordinate reference system, which 
corresponds to the SIRGAS 2000 geodetic system associated with the Universal 
Transverse Mercator (UTM) cartographic projection, zone 23 South (central 
meridian 45°W). This reference system is suitable for the study area, as the 
municipality of Rio de Janeiro is located near the zone's secant meridian, which 
contributes to minimizing linear and areal distortions in spatial analyses. 
For this study, only the visible spectrum bands (RGB) were used. Considering the 
high computational cost associated with processing images of large territorial extent, 
a spatial grid composed of 512 × 512 meter squares, bounded by the area of the 
municipality of Rio de Janeiro, was created. 
To reduce the spatial resolution of the images, originally 15 cm, pixel resampling 
was performed using the bilinear method, resulting in a resolution of 50 cm. This 
new resolution preserves an adequate capacity for identifying urban components 
while significantly reducing the computational cost of processing. 
Squares located on uninhabited islands were discarded, while those situated on the 
municipal border were retained only when at least one-third of their area was within 
the municipality's limits. 
At the end of this process, the resulting grid went from 5,002 to 4,647 squares. 
These squares were then used to clip the image of the municipality of Rio de 
Janeiro (with a spatial resolution of 1 m), generating multiple smaller images that are 
therefore more viable for computational analysis. 
The city of Rio de Janeiro, as defined in its Plano Diretor de Desenvolvimento 
Urbano Sustentável (PDUS - Master Plan for Sustainable Urban Development), is 
subdivided into different territorial units intended for urban development planning 
and control. Among these units are the Áreas de Planejamento (APs - Planning 
Areas), five areas defined based on criteria of environmental compartmentalization, 
historical characteristics, and patterns of land use and occupation (Rio de Janeiro, 
2025): 

●​ Planning Area 1 (AP1) – corresponds to the central region of the city; 
●​ Planning Area 2 (AP2) – covers the Zona Sul (South Zone) and Grande Tijuca; 
●​ Planning Area 3 (AP3) – comprises the Zona Norte (North Zone), with the 

exception of Grande Tijuca and the Administrative Region VII (São Cristóvão); 
●​ Planning Area 4 (AP4) – corresponds to the Sudoeste (Southwest) Region, 

created more recently; 
●​ Planning Area 5 (AP5) – encompasses the neighborhoods of the Zona Oeste 

(West Zone). 
To ensure comprehensive territorial representativeness, it was decided to use the 
Planning Areas officially defined by the Municipal Government. This decision 
considers that the physical and socioeconomic differences of the population directly 
influence the configuration and characteristics of the urban space. 
Thus, each square in the grid was associated with a Planning Area (AP) of the 
municipality (Figure 1), according to the official division made available by the 
DATA.RIO platform (2023). In cases where a square overlapped two or more APs, 
specific attribution criteria were established, ensuring the consistency of the 
territorial classification: 

1.​ Squares containing regions classified as favelas by the IBGE or the Rio de 
Janeiro Municipal Government were assigned to the AP that encompassed this 
classified area; 

2.​ Squares without favela areas, or containing favela areas in more than one AP, 
were designated to the AP that had the largest territorial extent within the 
square. 
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Figure 1: Grid of 512 m² squares applied over the image of the city of Rio de 
Janeiro. The grid was used to segment the urban area into smaller, standardized 

sections, facilitating the processing of satellite images. Distributed across the 
Planning Areas of the Rio de Janeiro Municipal Government. 

Source: Own elaboration 
 
The identification of grid squares containing the areas of interest was based on 
vector spatial data in shapefile format. This data corresponds to the 2022 Census 
tract mesh, made available by the IBGE, initially classified as Aglomerados 
Subnormais (AGSN - Subnormal Agglomerates), a designation later updated to 
Favelas e Comunidades Urbanas (FCU - Favelas and Urban Communities). 
The change in nomenclature reflects a process of conceptual revision conducted by 
the IBGE, in dialogue with social movements, the academic community, and other 
government agencies. This update seeks to adopt a more adequate and respectful 
terminology, replacing the expression "Aglomerados Subnormais," which had come 
to be considered inadequate as it reinforces social stigmas. However, it is important 
to note that the change was only terminological, with no changes to the technical 
criteria used to identify and map these areas (IBGE, 2024). 
Additionally, data from the Municipal Institute of Urbanism Pereira Passos (IPP) 
were incorporated. These data, made available on the DATA.RIO portal (2019), 
delimit the areas officially recognized as favelas. 
For the IBGE, the characterization of a subnormal agglomerate occurs when there is 
irregular land occupation, associated with at least one of the following conditions 
(IBGE, 2020): 

●​ Precariousness of essential public services, such as water supply, electricity 
supply, garbage collection, or sanitation; 

●​ Irregular urban pattern, reflected in the presence of narrow circulation routes, 
irregular alignment, lots of unequal sizes and shapes, absence of sidewalks, or 
constructions not regularized by public agencies; 

●​ Restriction on land occupation, when households are located in areas 
protected by environmental legislation, highway or railway right-of-way strips, 
contaminated areas, among other situations of inadequate urban land use. 

Furthermore, after identifying and delimiting the areas, the IBGE associates the 
subnormal agglomerates with the operational units of the Demographic Census, 
called census tracts. Each tract must comprise contiguous areas with at least 51 
households, respecting political-administrative boundaries and ensuring the 
territorial and operational coherence of census data collection (IBGE, 2020). 
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In turn, the IPP — an agency linked to the Rio de Janeiro Municipal Government — 
uses the term favela with a socio-spatial and administrative focus, seeking to 
recognize and map territories consolidated within the urban fabric. The definition 
adopted by the IPP takes into account a broader set of characteristics, which include 
both physical and social and cadastral aspects. According to the Institute, an area is 
considered a favela when it presents (Rio de Janeiro, 2012): 

1.​ Irregular land occupation; 
2.​ Absence of formal property titles (which does not imply illegality of the 

occupation); 
3.​ Urban fabric arranged irregularly; 
4.​ Small and undefined lots; 
5.​ Narrow streets; 
6.​ Precarious sanitation infrastructure; 
7.​ Non-existent or insufficient social facilities; 
8.​ Precarious housing and non-compliance with urban norms; 
9.​ Absence of special urban norms applicable to the area; 
10.​Non-inclusion of properties in municipal real estate cadasters; 
11.​Predominance of a low-income population. 

 

 
Figure 2: Favelas areas classified by the IBGE and by Data.Rio. The overlap of the 
two databases allows visualizing areas of agreement and divergence between the 
classifications, showing sections recognized by both sources and regions identified 

by only one of them. 
Source: Own elaboration 

 

The overlap of the polygons from the two databases allowed for the identification of 
classification discrepancies, revealing areas recognized as Favelas and Urban 
Communities (FCU) by the IBGE but not registered as favelas in DATA.RIO, and 
vice versa (Figure 2). The consolidation of these databases made it possible to 
expand the set of pre-classified areas, in order to extract from the grid of squares 
only the image sections that presented some prior identification of a favela in at 
least one of the sources. 
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As a result, a significant reduction in the number of images to be processed was 
observed. In the end, 1,512 squares potentially associated with the presence of 
favela areas were identified (Figure 3). 
 

 
Figure 3: Overlap of the grid of squares with the favela areas classified by the IBGE 
and by Data.Rio. The combination of these layers allows identifying which sections 

of the grid show indications of containing favelas within the scene, based on the 
classifications previously carried out by the agencies. 

Source: Own elaboration 

2.2​Training Sample 

2.2.1 Identification of favela areas 
The images from the spatial grid resulting from the overlap of the IBGE and 
Data.Rio areas (Figure 3) were considered as the target population, from which the 
training sample was extracted. A stratified sample with inverse sampling was 
selected, corresponding to 30% of the squares belonging to Planning Areas 1 to 4. 
Planning Area 5 was excluded at this stage due to the high effort required to create 
the reference masks. Due to this operational limitation, AP5 was not included in the 
current sample, with its incorporation planned for future studies. 
In stratified sampling, the population  is divided into strata  — distinct and (𝑈) (𝐻)
exhaustive groups, homogeneous in relation to the variable of interest. Selection 
occurs independently in each stratum, and the final sample results from the union of 
the selected units (Silva; Bianchini; Dias, 2023). 
In this study, the strata correspond to the Planning Areas, since this division is 
based on the previously mentioned criteria that influence the urban pattern. Spatial 
stratification tends to significantly increase sampling efficiency, especially in regions 
with heterogeneous characteristics (Dong et al., 2022). 
For the selection within the strata, simple inverse sampling was used, a sequential 
procedure in which, instead of directly selecting a fixed number n of units, the units 
of the population are successively evaluated until n of them satisfy the condition of 
interest (Silva; Bianchini; Dias, 2023). In the present study, this corresponded to 
evaluating  images until  of them contained areas of favelas and urban 𝑚 𝑛
communities. 
In total, 358 images were evaluated, corresponding to the selected squares in APs 1 
to 4. Of these, 286 images (30% of the eligible ones) composed the final sample, 
while 72 were discarded (Table 1). 
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Table 1: Number of images in the sample per Planning Area 

AP  (𝐻) Population  (𝑈) Evaluated  (𝑚) Discarded  (𝑟) Sample  (𝑛)

1 70 23 2 21 
2 117 53 18 35 
3 444 157 24 133 
4 322 125 25 97 

Source: Own elaboration 

 
The identification of favela areas was carried out by analyzing the grid of sample 
squares in Google Earth Pro. In regions with Street View coverage, direct visual 
inspection of the buildings was performed. In areas without this coverage, the 
evaluation was based on the terrain relief and 3D constructions, examined from 
multiple angles and reference points within the images, which ensured a consistent 
visual identification of the areas of interest (Figure 4). 
 

 
Figure 4: Visualization, in Google Earth Pro, of the overlap of the grid of squares 

with the favela areas classified by the IBGE and Data.Rio. The analysis includes the 
inspection of internal streets via Street View and, in locations where this tool is not 

available, the observation of the relief and 3D constructions. The placement of 
reference elements (yellow circle) assists in the geospatial location of each image 

during the visual analysis process. 
Source: Own elaboration 

 
Simultaneously with the visual identification of favelas in Google Earth Pro, the 
sample images were manually segmented in the drawing application Procreate, on a 
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tablet, to produce the reference masks used in the training and testing of the model. 
In the masks, the favela areas were filled with the color white, while the other urban 
areas received the color black. During the process, an effort was made to outline 
elements that, although located within favelas, are not dwellings, such as trees, 
streets, and soccer fields, in order to refine the delineation of the areas of interest 
(Figure 5). 
 

 
Figure 5: Satellite image 7690, corresponding to part of the Complexo do Alemão 
(Planning Area 3). In the lower right corner, the Colégio Estadual Jornalista Tim 

Lopes can be observed, and a little above, the Vila Olímpica Carlos Castilho. The 
figure also presents the reference mask produced in the study: the areas in white 
correspond to the regions classified as favela after the process of manual analysis 
and segmentation of the image, while the areas in black represent the other urban 

regions not classified as favela. 
Source: Own elaboration 

 
In total, an approximate area of 75 km² was analyzed, the images of which were 
entirely segmented manually. Of the total segmented area, 12.10% correspond to 
the variable of interest, that is, the favela areas. This percentage is higher than that 
of the areas officially demarcated as favelas by the IBGE and the IPP when 
considering the entire territorial extension of the municipality of Rio de Janeiro, in 
which these areas represent less than 5%. 
The sample was divided into two distinct groups: training and testing. Of the total, 
80% of the images (229) were allocated for model training, while 20% (57) 
composed the test set (Table 2). The images were distributed among the four 
Planning Areas (Figure 6). 
 

Table 2: Quantity of training and test images 
AP Training Test 

1 17 4 
2 28 7 
3 106 27 
4 78 19 

Source: Own elaboration 
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Figure 6: Spatial distribution of the training and test sets across Planning Areas 1 to 
4, corresponding to the strata defined in the sampling process. 

Source: Own elaboration 

2.2.2 Criteria for selecting favela areas 
The discarding of part of the images during the inverse sampling process was 
carried out through individual visual inspection, aiming to ensure that only those 
presenting pixels corresponding to constructions characteristic of favelas were 
included in the sample. 
The exclusion of images occurred due to the absence of typical favela constructions 
within the analyzed scene. This fact stems from the spatial delimitations used — 
both from the IBGE and Data.Rio — often presenting a territorial extension greater 
than the effective area of the favela. Thus, in the process of overlapping these areas 
with the grid of squares used to define the population, images that did not contain 
favelas were included (Figure 7). 
 

 
Figure 7: Image 8436, located near the Complexo do Turano, in the Rio Comprido 

neighborhood, was discarded. Although the IBGE database indicates a small favela 
area within the section, there are no constructions with compatible characteristics in 
that portion of the scene. In contrast, images 8435 and 8508 present buildings that 

justify their inclusion in the analysis. 
Source: Own elaboration 
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As it is an image-based analysis, the identification of favela areas was based on a 
set of visual criteria (Figure 8): 

1.​ Irregular pattern of constructions: disorderly arrangement of buildings, with 
no signs of urban planning. 

2.​ Precarious construction materials: use of improvised or low-durability 
materials. 

3.​ Location on slopes: presence of constructions on sloping terrain, often 
subject to landslide risks. 

4.​ Proximity to highways and railways: occupations in restricted strips along 
transportation infrastructure. 

5.​ Proximity to drainage ditches: occurrence of buildings next to open sewers 
or precariously channeled watercourses. 

6.​ Narrow streets: streets with reduced width, generally incompatible with the 
circulation of emergency vehicles or public transport. 

 

 
Figure 8: Visual criteria for identifying favelas. The highlighted areas present: (1) 

irregular pattern of constructions without urban planning; (2) precarious construction 
materials; (3) occupation on slopes; (4) proximity to highways and railways in 

restricted strips; (5) buildings next to drainage ditches and open sewers; (6) narrow 
streets incompatible with emergency vehicle circulation. 

Source: Own elaboration 

2.3​Image Augmentation to Expand the Training Set 
To expand the training set without the need to manually produce new masks, the 
Albumentations library (Buslaev, 2018) was used, which allows applying fast, 
efficient, and flexible transformations to images, such as mirroring, rotations, and 
geometric distortions. 
The following transformations were applied to the original (OR) set of images 
(Figure 9): 

●​ HorizontalFlip (HF) – horizontal mirroring of the image; 
●​ VerticalFlip (VF) – vertical mirroring of the image; 
●​ Transpose (TP) – transposition of the image, inverting rows and columns. 
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Figure 9: Image 09064, located in the Cocotá neighborhood on Ilha do Governador, 
near Praia de Cocotá (Planning Area 3). The original image was subjected, via the 

Albumentations library, to horizontal mirroring, vertical mirroring, and row and 
column transposition transformations. The same transformations were applied to the 

corresponding reference mask, ensuring the consistency of the image-mask pair 
after data augmentation. 

Source: Own elaboration 
 
Based on these transformations, two data sets were defined for model training: 

1.​ Model trained without data augmentation; 
2.​ Model trained with data augmentation. 

In the model trained with data augmentation, after image augmentation, the number 
of training images became four times larger than the original set (without data 
augmentation), while the test set remained unchanged. 

2.4​Automatic Identification of Favela Areas 
The automatic identification of favela areas in the satellite images was performed 
from the set of training images, processed using a model based on the U-Net 
architecture (Ronneberger; Fischer; Brox, 2015). This convolutional neural network 
(CNN) is specifically designed for semantic segmentation tasks, in which each pixel 
of the image is classified into a specific category. 
The application of deep neural networks, particularly the U-Net architecture, for 
mapping precarious settlements from satellite images has been explored in recent 
studies, demonstrating promising results. 
Lu et al. (2021) proposed GASlum-Net, an innovative architecture that combines the 
principles of U-Net and ConvNeXt in a two-stream framework to integrate RGB 
images (from the Jilin-1 satellite, 5 m) and geospatial features derived from 
Sentinel-2. Their model, trained on 2,892 images of 64x64 pixels, significantly 
outperformed the baselines (U-Net, ConvNeXt-UNet, and FuseNet), achieving an 
improvement of up to 10.97% in IoU. The study highlighted the model's 
effectiveness in detecting medium and large-sized slums (5 a >25 ha) and analyzed 
the impact of different features and architectural adjustments on performance. 
Additionally, Abascal et al. (2022) applied U-Net to map urban deprivation patterns 
in Nairobi, using very high-resolution images (WorldView-3, 30 cm). The model 
achieved an accuracy of 0.92 and an IoU of 0.73 on the test set, validating its 
effectiveness for urban feature extraction. The study also revealed limitations in 
distinguishing individual buildings in high-density areas, where the pixel size 
exceeded the spaces between constructions. To overcome this, the authors resorted 
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to an aggregated morphological analysis, classifying areas into deprivation levels 
(High, Medium, Low) with an overall accuracy of 0.71. The research concluded that 
semi-automatic feature extraction is feasible and that combining deep learning with 
spatial analysis provides valuable insights for urban planning. 
The main characteristic of this architecture is its symmetrical "U"-shaped structure, 
composed of two complementary parts, the encoder and the decoder (Figure 10). 
 

 
Figure 10: Illustration of the U-Net architecture applied to images of 1024 × 1024 

pixels with three channels, presented in its characteristic symmetrical format, 
composed of encoder (contraction) and decoder (expansion) blocks. 

Source: Own elaboration 
 
The blue boxes in Figure 10 represent the feature maps extracted from the images, 
while the yellow boxes show the copies of these features used later. The arrows 
indicate the different operations performed throughout the network. 
On the left side is the encoder, or contraction path, responsible for extracting 
features from the input image. As the image passes through convolutional layers 
(red arrow) followed by the application of the ReLU (Rectified Linear Unit) activation 
function, the network identifies patterns at different levels, increasing the number of 
channels. Then, the 2x2 max pooling layers (green arrow) reduce the spatial 
resolution, allowing the network to capture more general information. 
On the right side is the decoder, or expansion path, responsible for recovering the 
resolution of the features and reconstructing the segmentation map. This process is 
performed through transposed convolutions (pink arrow), which increase the spatial 
resolution, followed by the application of the ReLU activation function and new 
convolutional layers (red arrow), which refine the recovered details. 
Between the two paths are the skip connections (blue arrow), which directly link the 
layers of the contraction to the corresponding layers of the expansion. These 
connections concatenate the feature maps from both sides, allowing the 
combination of fine details — preserved in the encoder — with the more abstract 
information from the decoder, generating more precise segmentations. 
Finally, the output layer (orange arrow) is a convolutional layer responsible for 
producing the final segmentation, with the same resolution as the original image. 
During model training, Dice Loss, defined as 1 - Dice Coefficient (Figure 11), was 
used as the loss function. This choice was motivated by the class imbalance, as the 
favela areas occupy a significantly smaller proportion of the image compared to 
other urban classes. Dice Loss is especially suitable for segmentation tasks in 
unbalanced scenarios, as it more severely penalizes errors in predicting the minority 
class and favors maximizing the overlap between the predicted and reference 
masks. 
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Figure 11: Illustration of the concept of the Dice Coefficient and Dice Loss, showing 

the relationship between twice the area of intersection of the true mask and 
predicted mask regions and the sum of the areas of both masks. 

Source: Own elaboration 
 
For both data sets, training was performed with a maximum number of 400 epochs, 
using early stopping with a patience of 50 epochs, a technique that stops training 
when there is no improvement in validation performance for a certain number of 
epochs, avoiding overfitting. In both cases, a batch size of 8 and a learning rate of 1 
× 10⁻⁴ were adopted. In Data Set 2, the use of data augmentation increased the 
effective number of samples, allowing this configuration to be maintained and 
ensuring a fair comparison between the models. 
The implementation of the model, as well as the entire training and evaluation 
pipeline, was developed in the Python language, using specialized deep learning 
libraries, notably TensorFlow and Keras in building the neural architecture. Image 
preprocessing was performed with OpenCV (cv2) and NumPy, while quantitative 
evaluation employed metrics from the scikit-learn library. 

2.5​Metrics for Model Performance Evaluation 
The evaluation metrics used in this study were IoU (Intersection over Union), 
F1-Score (or F-statistic), Recall, and Precision. Both range from 0 to 1, with values 
closer to 1 indicating greater model accuracy in the segmentation task. 
IoU, also known as the Jaccard index, measures the degree of overlap between the 
predicted mask and the true mask, calculated by the ratio of the intersection area to 
the union area of the two masks (Lakshmanan; Görner; Gillard, 2021). The higher 
the IoU value, the more precise the segmentation, making it especially relevant in 
tasks that demand high spatial accuracy (Figure 12). 
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Figure 12: Illustration of the IoU (Intersection over Union) concept, showing the 

intersection area between the true mask and the predicted mask in relation to the 
union area of both. 

Source: Own elaboration 
 
For a deeper understanding of the other metrics, it is essential to know the concepts 
associated with the confusion matrix (Figure 13): True Positive (TP), True Negative 
(TN), False Positive (FP), and False Negative (FN) (Provost; Fawcett, 2016). 
 

 
Figure 13: Confusion matrix, which compares the model's predicted values with the 
actual values, organizing the results into four categories: True Positives (TP) and 
True Negatives (TN) represent correct predictions; False Positives (FP) and False 

Negatives (FN) represent errors. 
Source: Own elaboration 

 
●​ True Positive (TP): Case in which the model predicts the positive class and 

this prediction corresponds to the actual positive class. That is, the model 
correctly identifies the presence of the class of interest. 

●​ True Negative (TN): Situation in which both the model's prediction and the 
reality belong to the negative class. Thus, the model adequately recognizes 
the absence of the class of interest. 

●​ False Positive (FP): Occurs when the model predicts the positive class, but 
the actual class is negative. In other words, the model erroneously signals the 
presence of the class of interest. 

●​ False Negative (FN): Case in which the model predicts the negative class, but 
the actual class is positive. This means the model fails to identify the presence 
of the class of interest. 
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Precision and Recall are complementary metrics widely used in evaluating 
classification models, especially in contexts of class imbalance (Figure 14). While 
Precision is associated with the reliability of positive predictions made by the model, 
Recall reflects its ability to correctly identify existing positive cases (Provost; 
Fawcett, 2016): 

●​ Precision: evaluates the proportion of positive predictions that are actually 
correct, calculated by the ratio between true positives (TP) and the sum of true 
positives and false positives (TP + FP). 

●​ Recall: measures the model's ability to identify all real positive cases, 
corresponding to the ratio between true positives (TP) and the sum of true 
positives and false negatives (TP + FN). 

 

 
Figure 14: Illustration of the concept of Precision and Recall. The figure illustrates 

how false positives reduce Precision and false negatives reduce Recall, 
emphasizing that the emphasis on one metric impacts the other. 

Source: Own elaboration 
 
The F1-Score, in turn, integrates the Precision and Recall metrics into a single 
measure, allowing for the simultaneous evaluation of the reliability of positive 
predictions and the model's ability to correctly identify all positive cases (Provost; 
Fawcett, 2016). 
This metric is calculated through the harmonic mean between Precision and Recall, 
which penalizes extreme values and results in a more balanced and representative 
evaluation of the model's performance, especially in scenarios with class imbalance. 
 

                                         (1) 𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

3​ Methodology 
After training the models with and without data augmentation, the lowest values of 
the loss function were reached at epoch 52 for the model without data augmentation 
and at epoch 71 for the model with data augmentation. In both cases, there was no 
improvement in the subsequent 50 epochs, which triggered the early stopping 
criterion. 
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The overall analysis of the results, considering the average of the four planning 
areas, indicates that the model trained with data augmentation shows superior 
performance in three of the four evaluated metrics. It obtained higher average 
values for IoU, Precision, and F1-Score, evidencing an improvement in the overall 
segmentation quality and in the balance between false positive and false negative 
errors. 
On the other hand, the model without data augmentation presented a higher 
average value for Recall, indicating a greater ability to correctly identify regions of 
interest, albeit at the cost of a higher incidence of false positives. This behavior 
reinforces the existence of a trade-off between Precision and Recall, where an 
increase in one metric tends to negatively impact the other. 
In general, the results suggest that the use of data augmentation contributes to 
making the model more balanced and robust, with consistent gains in aggregated 
metrics such as IoU and F1-Score, which are particularly relevant for the overall 
performance evaluation in segmentation tasks (Table 3). 
 

Table 3. Average performance of evaluation metrics for the U-Net trained without 
and with data augmentation. The superior values between the two models per 

Planning Area and Overall are highlighted in blue. 

AP Model without data augmentation Model with data augmentation 

IoU Prec Recall F1 IoU Prec Recall F1 

1 0,7037 0,5101 0,7850 0,5887 0,7053 0,5328 0,7031 0,5828 

2 0,7491 0,6953 0,7962 0,7287 0,7576 0,7419 0,7659 0,7344 

3 0,6334 0,5188 0,7785 0,5628 0,6847 0,6034 0,7548 0,6256 

4 0,7283 0,5188 0,7785 0,6791 0,7441 0,6902 0,7282 0,6955 

Overall 0,6842 0,5189 0,7751 0,6238 0,7149 0,6444 0,7437 0,6592 
Source: Own elaboration 

 
The disaggregated analysis by Planning Area (AP) shows that the effects of data 
augmentation vary according to the spatial context, although a general pattern of 
improvement in aggregated metrics is observed. In APs 2, 3, and 4, the model with 
data augmentation presented performance superior or equivalent to the model 
without data augmentation in the metrics of IoU, Precision, and F1-Score, indicating 
consistent gains in segmentation quality and in the balance between classification 
errors. 
In AP 3, in particular, the advantage of the model with data augmentation is more 
pronounced, with significant increases in IoU, Precision, and F1-Score, in addition to 
a high Recall. Similar results, although less accentuated, are observed in APs 2 and 
4, where the model with data augmentation maintains globally superior 
performance. 
AP 1 presents a distinct behavior. Although the model with data augmentation 
obtains a slightly higher IoU (0.7053 vs. 0.7037) and higher Precision (0.5328 vs. 
0.5101), the model without augmentation presents considerably higher Recall 
(0.7850 vs. 0.7031), resulting in a marginally superior F1-Score. This result indicates 
a more pronounced trade-off between Precision and Recall in this specific area, 
possibly associated with the particular characteristics of the region and the limited 
number of samples available. 
In summary, the analysis by AP confirms that data augmentation tends to produce 
more balanced models with better overall performance, especially in terms of IoU 
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and F1-Score, although its impact may vary locally depending on the distribution 
and representativeness of the training data. 
The boxplot presents the distribution of metrics for the 57 images in the test set, 
stratified by Planning Area, revealing important patterns (Figure 15). The model 
trained with data augmentation demonstrates lower dispersion in the values of IoU 
and F1-Score, indicating more consistent and predictable performance in these 
metrics. In contrast, the model without data augmentation presents higher median 
values in the Recall metric. Regarding Precision, the model with augmentation 
shows a distribution slightly shifted upwards, with higher first, third quartiles, and 
median, suggesting superior performance. 
 

 
Figure 15: Distribution of evaluation metrics (IoU, Precision, Recall, and F1-Score) 

for the U-Net trained without and with data augmentation, stratified by Planning Area 
(AP). The analysis reveals that the model with data augmentation presents lower 
dispersion in the metrics of IoU, Precision, and F1-Score, while the model without 

augmentation has higher quartiles in Recall. 
Source: Own elaboration 

 

To objectively evaluate whether the observed performance gain was statistically 
significant, hypothesis tests were conducted comparing the IoU and F1-Score 
values obtained by the model with data augmentation against those of the model 
without data augmentation. As the data from the 57 images in the test set represent 
paired measurements (each image evaluated by both models), appropriate 
statistical tests for paired samples were selected. 
Initially, the Shapiro–Wilk test applied to the individual differences in IoU values for 
each image rejected the hypothesis of normality (p-value = 0.0019), thus violating a 
fundamental assumption of the paired t-test. Given this, the Wilcoxon signed-rank 
test for paired samples was chosen, a non-parametric method robust to deviations 
from normality, which assesses whether the differences between the pairs show a 
systematic shift from zero. 
The test was configured with a one-sided alternative hypothesis (H₁) that the IoU 
values of the model with data augmentation (M₂) tend to be greater than those of the 
model without data augmentation (M₁), as defined below: 
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●​ H₀: The distributions of the IoU values of M₁ and M₂ are equal. That is, there is 
no evidence that the IoU values of M₂ are systematically greater than those of 
M₁. 

●​ H₁: The IoU values of M₂ are systematically greater than those of M₁. 
Considering a significance level (α) of 0.05, the p-value of 0.0006 allowed for the 
rejection of the null hypothesis (H₀), providing statistical evidence that the IoU values 
of the model trained with data augmentation are superior. The median of the 
differences was positive (+0.0183), corroborating this conclusion. Additionally, in 
71.9% of the images (41 out of 57), the model with data augmentation outperformed 
the model without augmentation, reinforcing the practical consistency of the 
observed advantage. 
For the F1-Score, a similar procedure was adopted. The Shapiro–Wilk test also 
rejected the normality of the differences (p-value = 0.0002), again justifying the use 
of the non-parametric Wilcoxon test. The same hypothesis scheme was applied: 

●​ H₀: The distributions of the F1-Score values of M₁ and M₂ are equal. 
●​ H₁: The F1-Score values of M₂ are systematically greater than those of M₁. 

The result, also considering a significance level (α) of 0.05, with a p-value = 0.0060, 
led to the rejection of the null hypothesis. The superiority of the model with data 
augmentation was also manifested in the difference of the F1-Score medians 
(+0.0122 points). Model M₂ outperformed M₁ in 66.67% of the images (38 out of 57), 
presenting inferior performance in only 33.33% of the cases (19 out of 57). 
To visualize and understand the behavior of the predictions in identifying favelas in 
satellite images, visual results are presented below referring to two samples from 
each of the four Planning Areas (AP): one example of successful prediction and 
another where performance was inferior. Each image is accompanied by its 
respective IoU and F1-Score metrics. To facilitate comparative analysis, the areas 
predicted as favelas were overlaid on the original images with transparency applied, 
allowing a clear view of the urban regions classified by the U-Net model while 
preserving the original form for direct comparison with the reference masks. 
In image 08135, corresponding to Planning Area 1, a segment of the favela Parque 
Horácio Cardoso Franco is observed in the upper right corner, located in Benfica, on 
Rua Couto de Magalhães (Figure 16). Both models showed satisfactory 
performance in segmenting the area of interest; however, the model trained with 
data augmentation obtained superior results, reflected in higher IoU and F1-Score 
values. It is observed that the model without data augmentation erroneously 
classified a small region in the upper right corner of the image, while the errors of 
the model with data augmentation were more localized and restricted to the vicinity 
of the favela, indicating more precise and spatially coherent segmentation. 
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Figure 16: Visual comparison of predictions for image 08135 (Planning Area 1). 

From left to right: (a) original satellite image; (b) reference mask; (c) prediction of the 
model without data augmentation; (d) prediction of the model with data 

augmentation. The scene includes, in the upper right corner, a segment of the favela 
Parque Horácio Cardoso Franco, in Benfica (Rua Couto de Magalhães). 

Source: Own elaboration 
 
Image 08430, corresponding to Planning Area 1, contains, in its lower portion, a 
small favela recorded exclusively in the Instituto Pereira Passos database, located 
at the corner of Rua José Eugênio and Rua Francisco Eugênio, in the São Cristóvão 
neighborhood (Figure 17). Due to the reduced size of the area of interest, both 
models showed low overlap with the favela region, although with IoU values above 
0.5. The model without data augmentation achieved superior performance in both 
IoU and F1-Score; however, it presented a significantly larger area erroneously 
classified as favela compared to the model trained with data augmentation, 
evidencing a trade-off between overall overlap and false positive control. 
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Figure 17: Visual comparison of predictions for image 08430 (Planning Area 1). 

From left to right: (a) original satellite image; (b) reference mask; (c) prediction of the 
model without data augmentation; (d) prediction of the model with data 

augmentation. The scene contains, in the lower portion, a small favela cataloged 
only by the Instituto Pereira Passos, situated at the corner of Rua José Eugênio and 

Rua Francisco Eugênio, in São Cristóvão. 
Source: Own elaboration 

 
In image 07848, referring to Planning Area 2, segments of Parque Vila Isabel are 
observed, separated in the scene by Parque Recanto do Trovador and Vila Olímpica 
Artur da Távola, in the Vila Isabel neighborhood, near the intersection of Rua 
Visconde de Santa Isabel and Rua Barão do Bom Retiro (Figure 18). Both models 
showed high performance, with IoU and F1-Score values above 0.9. Nevertheless, 
the model trained with data augmentation demonstrated slight superiority, by 
delineating the favela contours with greater precision and adequately discriminating 
internal elements that do not correspond to precarious dwellings. Note that small 
segments in the lower portion of the predictions of both models were erroneously 
classified as favela; these regions actually correspond to terrace areas in small 
residential buildings. 
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Figure 18: Visual comparison of predictions for image 07848 (Planning Area 2). 

From left to right: (a) original satellite image; (b) reference mask; (c) prediction of the 
model without data augmentation; (d) prediction of the model with data 

augmentation. The scene displays segments of Parque Vila Isabel, separated by 
Parque Recanto do Trovador and Vila Olímpica Artur da Távola, in the Vila Isabel 

neighborhood, near the intersection of Rua Visconde de Santa Isabel and Barão do 
Bom Retiro. 

Source: Own elaboration 
 
In image 08157, referring to Planning Area 2, the favela Vidigal is observed, located 
in the neighborhood of the same name, near Avenida Niemeyer (Figure 19). It is 
noted that both models erroneously classified an extensive area as favela, which 
does not correspond to the reference mask nor is it registered as such in the IPP or 
IBGE databases. This region presents a mixed pattern of occupation: although it 
contains constructions that clearly do not fit the favela classification, others have 
ambiguous visual characteristics that could raise questions. Additionally, the rugged 
terrain morphology, with a steep slope, contributes to a certain irregularity in the 
shapes of lots and buildings, which may have influenced the classification errors. 
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Figure 19: Visual comparison of predictions for image 08157 (Planning Area 2). 

From left to right: (a) original satellite image; (b) reference mask; (c) prediction of the 
model without data augmentation; (d) prediction of the model with data 
augmentation. The scene shows the favela Vidigal, in the homonymous 

neighborhood, near Avenida Niemeyer. 
Source: Own elaboration 

 
Image 07691 shows the favela Nova Brasília, located in the Complexo do Alemão in 
Planning Area 3, near the intersection of Estrada de Itararé and Avenida Itaóca 
(Figure 20). The prediction generated by the model with data augmentation showed 
superior performance, characterized by a lower occurrence of false positives 
(non-favela areas erroneously classified) compared to the model without data 
augmentation. The areas incorrectly segmented as favela by both models 
correspond, for the most part, to residential condominiums. 
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Figure 20: Visual comparison of predictions for image 07691 (Planning Area 3). 

From left to right: (a) original satellite image; (b) reference mask; (c) prediction of the 
model without data augmentation; (d) prediction of the model with data 

augmentation. The scene displays the favela Nova Brasília, in the Complexo do 
Alemão, near the meeting of Estrada de Itararé and Avenida Itaóca. 

Source: Own elaboration 
 
Image 07170, from Planning Area 3, displays the small favela Castelo de Lucas, 
recorded only in the IPP database and located in the Parada de Lucas 
neighborhood, at the meeting of Rua Cordovil and Rua Amadeu Amaral (Figure 21). 
In such a reduced area, both models had low overlap with IoU below 0.5. The model 
without data augmentation still managed some overlap with the favela area, 
evidenced by an F1-Score of 0.0006; however, it erroneously classified various 
areas as favela. The model with data augmentation erroneously classified a smaller 
area as favela but had an F1-Score of zero. 
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Figure 21: Visual comparison of predictions for image 07170 (Planning Area 3). 

From left to right: (a) original satellite image; (b) reference mask; (c) prediction of the 
model without data augmentation; (d) prediction of the model with data 

augmentation. The scene shows the small favela Castelo de Lucas, recorded 
exclusively by the IPP, situated in the Parada de Lucas neighborhood, at the 

confluence of Rua Cordovil and Amadeu Amaral. 
Source: Own elaboration 

 
Image 05804, from Planning Area 4, shows the favela Comunidade Corumau, 
located in the Taquara neighborhood, opposite Estrada Curumau (Figure 22). Both 
models achieved high values of IoU and F1-Score; however, the model trained with 
data augmentation showed superior performance. From a qualitative point of view, it 
is observed that this model delineated the favela contours with greater fidelity and 
generated a smaller amount of false positives — that is, areas not belonging to the 
favela incorrectly classified — when compared to the model without data 
augmentation. The main regions erroneously segmented correspond to terraces of 
townhouses and small residential buildings, whose spectral and textural 
characteristics may resemble those of favela areas in satellite images, making 
distinction difficult for both models. 
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Figure 22: Visual comparison of predictions for image 05804 (Planning Area 4). 

From left to right: (a) original satellite image; (b) reference mask; (c) prediction of the 
model without data augmentation; (d) prediction of the model with data 

augmentation. The scene displays the favela Comunidade Corumau, in Taquara, 
opposite Estrada Curumau. 

Source: Own elaboration 
 
Image 05729, from Planning Area 4, shows a small residential agglomerate 
classified as a favela only in the IPP database, situated opposite Estrada da Boiúna, 
in the Taquara neighborhood, in the lower left corner of the scene (Figure 23). Both 
models managed to partially identify this set of buildings, correctly attributing the 
favela class to it. However, false positives were also observed in other regions that 
are not registered as favelas in the reference mask nor in official databases. The 
area segmented in the upper left corner of the image, near Rua Pereira, presents 
ambiguous morphological and spectral characteristics, which may justify the 
classification divergence and raise questions regarding its real categorization. On 
the other hand, the buildings identified in the lower right corner only by the model 
without data augmentation correspond, in reality, to a small condominium located on 
Estrada Curumau, near the Túnel Senador Nelson Carneiro, constituting an 
unequivocal classification error. 
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Figure 23: Visual comparison of predictions for image 05729 (Planning Area 4). 

From left to right: (a) original satellite image; (b) reference mask; (c) prediction of the 
model without data augmentation; (d) prediction of the model with data 

augmentation. The scene displays, in the lower left corner, a small residential 
agglomerate cataloged as a favela only by the IPP, opposite Estrada da Boiúna, in 

Taquara. 
Source: Own elaboration 

4​ Final Considerations 
The obtained results confirm the promising performance of the U-Net architecture 
for identifying favelas in satellite images. Overall, the model trained with data 
augmentation showed superior performance in the metrics of IoU, F1-Score, and 
Precision, indicating higher quality in the overlap of segmented areas, a better 
balance between classification errors, and greater control over the occurrence of 
false positives. In contrast, this model recorded slightly lower Recall values 
compared to the model trained without data augmentation, evidencing a more 
conservative behavior in identifying areas of interest. 
This result reflects the classic trade-off between Precision and Recall, where data 
augmentation contributes to making the model more selective, reducing incorrect 
classifications (false positives), albeit at the cost of losing some true detections. This 
characteristic can be interpreted as desirable in applications where reducing false 
positives is a priority, such as in urban analyses and territorial planning. 
Furthermore, quantitative and qualitative analyses indicate that the use of data 
augmentation favors more stable and spatially coherent segmentation, especially in 
areas with greater morphological heterogeneity, reinforcing its relevance as a 
strategy to increase the model's generalization capacity. 
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Despite the observed advances, relevant challenges still persist. The model trained 
with data augmentation, although presenting higher precision, demonstrates a more 
conservative tendency in identifying favela areas, reducing the occurrence of false 
positives but, in some cases, failing to detect legitimate areas, especially those of 
small size or inserted in complex visual contexts. On the other hand, the model 
trained without data augmentation, by presenting higher Recall, proved more 
sensitive to detecting these areas, but with a greater propensity to erroneously 
classify regions that do not correspond to this type of occupation. 
In both cases, recurring errors were associated with areas that present visual 
characteristics similar to those of favelas, such as residential terraces, small 
condominiums, and degraded urban zones. Furthermore, the identification of small, 
fragmented favelas, segmented by the cutting grid or inserted in low-contrast visual 
environments, proved particularly challenging, highlighting limitations in 
distinguishing these areas due to the ambiguity of their spectral and spatial 
characteristics. 
To overcome these limitations and improve the model, the following directions for 
future work are suggested: 

1.​ Incorporation of additional spectral bands, such as Near Infrared (NIR) and 
Short-Wave Infrared (SWIR), which can capture information about vegetation 
vigor, moisture, and construction materials, aiding in the distinction between 
favelas and other urban typologies. 

2.​ Refinement of the class scheme, with the subdivision of the broad "non-favela" 
category into semantically distinct classes. The creation of specific categories 
for urban typologies frequently confused — such as formal residential 
complexes, commercial buildings, industrial warehouses, and terrace roofs — 
would allow the model to learn more discriminative representations. This 
greater granularity in defining the learning objective has the potential to 
significantly reduce false positives, providing a more stratified and contextual 
understanding of the urban fabric. 

3.​ Evaluation of more advanced neural network architectures, such as HRNet, 
transformers for computer vision (e.g., SegFormer, Mask2Former), and 
Self-Supervised Learning (SSL) methods, which can improve the 
representation capacity of spatial and textural features, especially in scenarios 
with limited annotated data. 

4.​ Exploration of post-processing strategies for mask refinement, such as edge 
smoothing techniques, segmentation fusion, and geometry-based methods, 
aiming to correct spatial incoherences and reduce noise in predictions. 

5.​ Integration of contextual and socioeconomic data at the census tract level, 
which can offer additional insights for differentiating low-income urban areas 
with similar morphologies. 

6.​ Collaborative review of the annotation process, involving multiple experts in the 
generation of reference masks. Since the interpretation of visual characteristics 
that define a favela is not always consensual, the consolidation of annotations 
through union or intersection operations can produce more consistent and 
robust reference masks. This approach allows capturing both a more 
comprehensive definition (union) and a more conservative one (intersection) of 
the phenomenon, reducing individual subjective biases and creating training 
bases that improve the model's generalization capacity for different interpretive 
contexts. 

7.​ Expansion and diversification of data augmentation techniques, using libraries 
like Albumentations to introduce more complex and stochastic transformations, 
increasing the variability of the training set and the model's robustness to 
different image conditions. 
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The implementation of these proposals has the potential to significantly elevate the 
accuracy, reliability, and applicability of semantic segmentation models in mapping 
precarious settlements, contributing to more assertive and evidence-based urban 
policies. 
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