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Resumen 
Detectar los cambios en las áreas naturales es esencial para su conservación. 
Este estudio evaluó la deforestación asociada a la urbanización en Barra da 
Tijuca (Río de Janeiro), utilizando el algoritmo LandTrendr en series temporales 
de imágenes Landsat (1985-2024). El método alcanzó una alta precisión, con 
una exactitud global de 0,92, una puntuación F1 de 0,91 y un índice Kappa de 
0,83. Los resultados indicaron que el periodo de mayor cambio se produjo entre 
1985 y 1990, con 22,5 km² alterados, un valor tres veces superior al del periodo 
2010-2015 (7,4 km²). Estas transformaciones están asociadas a la intensa 
expansión inmobiliaria y al desarrollo urbano. 

Palabras clave:​ detección de cambios, teledetección, NDVI, Google Earth Engine 
 

Resumo 
A detecção de mudanças em áreas naturais é essencial para sua preservação. 
Este estudo avaliou o desflorestamento associado à urbanização na Barra da 
Tijuca (RJ), utilizando o algoritmo LandTrendr em séries temporais de imagens 
Landsat (1985 - 2024). O método alcançou alta precisão, com acurácia global de 
0,92, F1-score de 0,91 e Kappa de 0,83. Os resultados indicaram que o período 
de maior mudança ocorreu entre 1985 e 1990, com 22,5 km² alterados, valor três 
vezes superior ao período de 2010-2015 (7,4 km²). Estas transformações estão 
associadas à intensa expansão imobiliária e ao desenvolvimento urbano. 

Palavras-chave:​ detecção de mudanças, sensoriamento remoto, NDVI, Google 
Earth Engine 
 

Abstract 
Detecting changes in natural areas is essential for their preservation. This study 
evaluated deforestation associated with urbanization in Barra da Tijuca (Rio de 
Janeiro), using the LandTrendr algorithm on time series of Landsat images 
(1985-2024). The method achieved high precision, with an overall accuracy of 
0.92, an F1-score of 0.91, and a Kappa of 0.83. The results indicated that the 
period of greatest change occurred between 1985 and 1990, with 22.5 km² 
altered, a value three times higher than the period of 2010-2015 (7.4 km²). These 
transformations are associated with intense real estate expansion and urban 
development. 

Keywords:​ change detection, remote sensing, NDVI, Google Earth Engine 



1​ Introducción 
La Región Administrativa XXIV – Barra da Tijuca, Río de Janeiro (RJ), se 
caracteriza por su alta densidad poblacional y su intensa urbanización. El desarrollo 
de esta región se intensificó en la década de 1970, impulsado por el Plan Piloto de 
Lúcio Costa (1969), que tenía como objetivo transformarla en un gran centro 
urbano. El proyecto incentivó la construcción de grandes condominios y la 
separación de sectores urbanos, tal como destaca Mendonça (2023). De acuerdo 
con Abreu (2006), la combinación de estas características atrajo emprendimientos 
inmobiliarios y consolidó a Barra da Tijuca como una región de gran valorización y 
referencia para la población de altos ingresos, alcanzando en 2010 el tercer mayor 
Índice de Desarrollo Humano Municipal (IDH-M) de la ciudad. 
A pesar del desarrollo acelerado, el monitoreo de la región es imprescindible, dada 
la presencia de importantes Unidades de Conservación y Áreas de Protección 
Ambiental (APA), tales como el Parque Estatal de Pedra Branca, la APA de Pedra 
Branca y el Parque Nacional de Tijuca, que albergan remanentes de la Mata 
Atlántica, como bosques ombrófilos, restingas y manglares. Este bioma es 
considerado prioritario para la conservación de la biodiversidad mundial, según lo 
descrito por Mazzurana (2016). No obstante, existen evidencias de una presión 
creciente sobre estas áreas protegidas. Sousa (2019) describe el debate sobre los 
impactos ambientales derivados de la deforestación y de las ocupaciones 
irregulares, tanto por poblaciones de bajos ingresos como por emprendimientos de 
alto nivel. 
La dinámica de ocupación irregular se ve agravada por la actuación de grupos 
criminales, como las milicias, en la promoción de construcciones ilegales y el lavado 
de dinero, hechos corroborados por reportajes locales como el de Peixoto y 
Nascimento (2023). Sousa (2019) destaca que, en muchos casos, la actuación de 
estos grupos responde a las señales del mercado inmobiliario con mayor rapidez 
que el poder público. Estas intervenciones, sumadas a la expansión de 
comunidades periféricas en laderas y al desarrollo inmobiliario formal, resultan en la 
supresión de la vegetación y en riesgos geológicos. Adicionalmente, el vertido 
irregular de residuos impacta la integridad ecológica de los manglares, a pesar de la 
resiliencia natural de este ecosistema, como señala Soffiati (2024). 
Ante este desafío socioambiental, es fundamental comprender de forma cuantitativa 
la dinámica de esta expansión para apoyar la gestión territorial (Tahir et al., 2025). 
El análisis de series temporales de imágenes de teledetección es una herramienta 
robusta para la observación de diversos fenómenos que alteran el uso y la 
cobertura del suelo, ya sea por dinámicas ambientales o por intervenciones 
humanas, como la deforestación y la urbanización (Zhu; Woodcock, 2014; Gómez 
et al., 2016). Este análisis permite una mayor comprensión de los fenómenos, 
factores e impactos de estos cambios. Para el análisis de grandes volúmenes de 
datos de teledetección (Big EO Data), el modelo de arreglo tridimensional es el más 
apropiado y permite la clasificación temporal de dos formas: clasificando cada serie 
temporal individualmente y, posteriormente, uniendo los resultados en el espacio 
(enfoque que sigue el paradigma Time-First, priorizando el tiempo y luego el 
espacio); o clasificando cada imagen por separado y, posteriormente, comparando 
las clasificaciones resultantes a lo largo del tiempo (enfoque que sigue el paradigma 
Space-First, priorizando el espacio y luego el tiempo) (Vinhas et al., 2016). Para 
Maus et al. (2016), un análisis de series temporales puede combinar ambas 
clasificaciones temporales, lo que fue corroborado por Vinhas et al. (2016). 
Este estudio utiliza el algoritmo LandTrendr (LT) — Landsat-based Detection of 
Trends in Disturbance and Recovery — para identificar y caracterizar los períodos 
de cambio en las áreas naturalmente vegetadas y medir la magnitud de las 
alteraciones ocurridas entre los años 1984 y 2024. LT es una herramienta eficaz de 
segmentación espectro-temporal para la detección de patrones de cambio 
(Kennedy; Yang; Cohen, 2010). Aunque fue desarrollado para el monitoreo forestal, 
el algoritmo ha sido ampliamente utilizado en análisis urbanos. Yan y Wang (2021) 
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utilizaron siete bandas/índices en LT para obtener información sobre el cambio 
urbano en Karachi (Pakistán) entre 2000 y 2020. Consideraron el valor mayoritario 
de la información como resultado, en un enfoque similar al método de votación 
mayoritaria, lo que, según los autores, permite superar de manera eficaz la 
incertidumbre en la extracción de información sobre la expansión urbana en 
comparación con el uso de una sola banda/índice. Hu et al. (2024) utilizaron la 
banda del infrarrojo de onda corta (SWIR) en LT para extraer el tiempo de 
construcción de edificios a partir de datos mensuales de la serie temporal Landsat. 
Este enfoque se aplicó para la detección de cambios en la construcción, demolición 
y reconstrucción de edificios en la ciudad de Pekín (China) entre 1990 y 2020. 
Mugiraneza, Nascetti y Ban (2020) tuvieron como objetivo el monitoreo continuo de 
las trayectorias de cambio en la cobertura del suelo urbano. Para ello, combinaron 
los resultados de LT, que utilizó múltiples índices, para reconstruir mapas densos de 
cobertura del suelo anuales para el período de 1990 a 2019. 
Considerando este contexto, el objetivo del presente estudio consistió en analizar 
los cambios en el uso y la cobertura del suelo en Barra da Tijuca entre los años 
1984 y 2024 mediante el algoritmo LandTrendr. La investigación busca cuantificar y 
mapear la pérdida de áreas vegetadas como consecuencia de la expansión urbana, 
validando los resultados mediante una matriz de error y métricas de exactitud, con 
el fin de garantizar la precisión en la detección de los cambios cartografiados. 

2​ Material e métodos 

2.1 Área de Estudio 
La Región Administrativa XXIV – Barra da Tijuca (Figura 1) corresponde a un área 
de aproximadamente 165 km², ubicada en el Área de Planificación 4 (AP4) – Zona 
Suroeste del municipio de Río de Janeiro (RJ). Este bioma, debido al intenso 
proceso de urbanización de los grandes centros urbanos — presentes en su 
mayoría en las regiones litorales brasileñas — ha tenido su territorio devastado, 
siendo el bioma brasileño que más ha sufrido bajo la influencia de la urbanización. 
Cabe destacar que más del 60% de la población brasileña residía en el dominio de 
este bioma en el año 2016, cuando representaba cerca del 7% de sus bosques 
originales, según lo presentado por Mazzurana (2016). A nivel local, Barra da Tijuca 
es la octava región más poblada del municipio, de acuerdo con los datos 
preliminares del Censo de 2022 (Prefeitura da Cidade do Rio de Janeiro, 2024), y 
enfrenta de forma recurrente problemas relacionados con la urbanización, como la 
deforestación y la ocupación de viviendas irregulares en áreas de protección 
ambiental, por parte de poblaciones de todos los niveles de renta, como destaca 
Sousa (2018). El proceso de urbanización tardío, iniciado poco antes de la 
disponibilidad de los datos Landsat, permitió la elección de esta área para la 
observación del avance de las áreas antrópicas sobre las regiones naturales. A 
pesar de la limitada extensión territorial, la aplicación del algoritmo demostró ser 
viable dada la resolución espacial de 30 metros de los datos Landsat, ya que la 
herramienta fue desarrollada específicamente para operar con estos sensores. 
Además, el algoritmo ha sido ampliamente empleado en el análisis de trayectorias 
de cambio en áreas urbanas.  
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Figura 1: Área de Estudo - RA da Barra da Tijuca, Rio de Janeiro (RJ) 

Fuente: Los autores (2025) 
  

2.2 Materiales 
El algoritmo LandTrendr (Landsat-based Detection of Trends in Disturbance and 
Recovery), desarrollado por Kennedy et al. (2010) e implementado en Google Earth 
Engine (LT-GEE), es un enfoque que permite un análisis más amplio y rápido que el 
basado en una imagen actual aislada (Kennedy et al., 2018). El objetivo general de 
LandTrendr es caracterizar una trayectoria temporal de valores de datos utilizando 
una secuencia de segmentos lineales conectados, delimitados por puntos de 
quiebre o nodos. El algoritmo trabaja con un intervalo de análisis de una imagen por 
año, y corresponde al usuario la parametrización para extraer la mejor información 
de acuerdo con el objetivo, variando según la banda espectral y/o el índice utilizado. 
Según Câmara et al. (2016), el enfoque basado en trayectorias representa un nuevo 
paradigma en el estudio de los cambios, destacando el tiempo como la variable 
central, en lugar del espacio, como consideran muchos mapeos. Esto se conoce 
como “time first vs. space first”, donde la respuesta temporal se convierte en el 
elemento central en la identificación de determinados fenómenos (Weckmüller; 
Vicens, 2018). 
Los datos temporales se analizan antes que los datos espaciales, y se prioriza el 
análisis de la serie temporal. El LT fue desarrollado originalmente para el monitoreo 
de cambios forestales, como la deforestación, los incendios y la regeneración, e 
incluye actualmente nuevos índices espectrales, como el NDSI (Normalized 
Difference Snow Index) y el NDMI (Normalized Difference Moisture Index). El 
objetivo de esta herramienta es mapear los cambios en cada píxel a lo largo del 
tiempo, definiendo eventos de cambio cuando estos ocurren. Los eventos 
mapeados generan bandas como “año del cambio”, “magnitud del cambio”, “valor 
previo al cambio” y “duración del cambio”. Este estudio se centró en el uso de las 
bandas “magnitud del cambio”, “año del cambio” y “duración del cambio”. 
Las imágenes Landsat se obtuvieron de forma gratuita del USGS (United States 
Geological Survey), a través del catálogo de imágenes de GEE (Google Earth 
Engine Data Catalog). Se utilizaron los productos Landsat Surface Reflectance Tier 
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1, con una resolución espacial de 30 metros y una resolución temporal de 16 días, 
para el análisis de una serie temporal de imágenes de 40 años. Aunque los 
sensores TM (Thematic  Mapper), a bordo del satélite Landsat 5, y ETM+ 
(Enhanced Thematic Mapper Plus), a bordo del satélite Landsat 7, son diferentes, 
operan en las mismas bandas espectrales, lo que asegura la integración de sus 
datos. El sensor OLI (Operational Land Imager), a bordo del satélite Landsat 8, cuya 
operación comenzó en 2013 y que también está integrado en LT, opera en más 
bandas espectrales que sus predecesores, aunque en regiones del espectro 
comunes a estos. Al tratarse de un método basado en series temporales, es 
necesario que los datos estén normalizados en cuanto a las diferencias entre 
sensores y libres de ruidos atmosféricos (como nubes y sombras), garantizando la 
consistencia de los datos a lo largo de los años. GEE proporciona los datos de 
reflectancia de superficie de los sensores Landsat ya con corrección geométrica y 
atmosférica, normalizados en su catálogo. 
El algoritmo fue implementado en la plataforma GEE, como lo propusieron Kennedy 
et al. (2018). Su ejecución requiere la definición de tres grupos de parámetros: 
parámetros de la colección, parámetros de ejecución y parámetros de cambio 
(Figura 2). El índice utilizado en el análisis de la serie temporal para la observación 
de áreas naturalmente vegetadas que sufrieron supresión fue el Índice de 
Vegetación por Diferencia Normalizada (Normalized Difference Vegetation Index 
NDVI – Ecuación 1). 
 

                                                 (1) 𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅−𝑅𝑒𝑑
𝑁𝐼𝑅+𝑅𝑒𝑑

   

 
Figura 2: Parámetros de entrada del algoritmo LT-GEE 

Fuente: Los autores (2025) 
  

2.2.1 Parametrización del LT 
Como parámetro de la colección se utilizó el índice NDVI. Es importante resaltar 
que LandTrendr puede aplicarse a diferentes métricas espectrales, incluidas bandas 
espectrales individuales y otros índices espectrales, como, por ejemplo, el índice 
NBR (Normalized Burn Ratio o Índice de Quemado Normalizado). La selección de 
este parámetro es determinante para la interpretación del cambio detectado. Por 
ejemplo, mientras que en el uso del NDVI una disminución en el valor del píxel 
implica la sustitución o supresión de la vegetación, en bandas como el infrarrojo de 
onda corta (SWIR) una disminución indicaría el proceso inverso (como recuperación 
de biomasa, pérdida de área construida o de suelo expuesto), ya que las superficies 
no vegetadas tienden a presentar mayor reflectancia en esta longitud de onda. La 
elección de este índice se justifica por su importancia en el análisis de una región 
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naturalmente cubierta por la Mata Atlántica. Además, históricamente es uno de los 
índices más utilizados en análisis de Teledetección, debido a su formulación simple 
y a la disponibilidad de largas series temporales satelitales, lo que permite el 
monitoreo de la fenología, la productividad (biomasa/producción primaria), la 
detección de sequías y degradación, la evaluación agrícola y los estudios 
ecológicos a gran escala (Rouse et al., 1974; Ponzoni; Shimabukuro, 2010; Huang 
et al., 2021). 
En el contexto del área de estudio, las variaciones en los valores de NDVI, aunque 
no representan directamente el impacto de la urbanización, pueden asociarse a su 
dinámica, ya que su variación a lo largo del tiempo puede reflejar cambios en los 
elementos de la superficie terrestre, como la cobertura vegetal, el suelo expuesto, 
los cuerpos de agua o las áreas construidas. Así, reducciones persistentes en los 
valores de NDVI pueden indicar procesos de sustitución de la vegetación por 
superficies antrópicas. 
Adicionalmente, se aplicó un filtro estacional seleccionando únicamente imágenes 
adquiridas entre mayo y junio. Este intervalo, que corresponde al final de la estación 
de transición del otoño y precede al invierno, tiende a presentar condiciones más 
secas y frías, reduciendo la inestabilidad atmosférica y, en consecuencia, la 
ocurrencia de nubes, lo que contribuye a disminuir el ruido en la serie temporal. 
Aunque el algoritmo permite trabajar con diversos períodos a lo largo del año, la 
elección de este recorte estacional tiene como objetivo garantizar una mayor 
consistencia espectral entre los años analizados, con el fin de evitar algunas 
limitaciones, como el riesgo de generar áreas sin datos (No-Data) debido a la 
presencia eventual de sombras, nubes u otros ruidos en las pocas imágenes 
disponibles para este período. 
En los parámetros de ejecución se definió un máximo de tres segmentos, con el 
objetivo de detectar únicamente cambios que permanecieron. En esta 
configuración, el período de estabilidad previo al cambio se define como un 
segmento, la transición del cambio como un segundo segmento, y el último 
segmento representa el período posterior al cambio, en el cual el índice se 
mantiene estable y en un nivel inferior al anterior. Esta configuración permite 
caracterizar transiciones como, por ejemplo, un área con vegetación que se vuelve 
deforestada y, posteriormente, se transforma en suelo expuesto preparado para un 
loteo, a partir del cambio registrado en el año 2000. Esto facilita la interpretación de 
los procesos de transformación observados. El parámetro de “mínimo de 6 
observaciones” destaca la necesidad de que el modelo analice los resultados al 
menos seis veces para realizar ajustes en sus salidas. Como el objetivo del estudio 
fue únicamente observar áreas que sufrieron cambios relacionados con la pérdida 
de vegetación para convertirse en otro uso, se aplicó un parámetro para evitar la 
detección de recuperación del índice en un período de un año; es decir, si hubiera 
recuperación del índice en este período, el evento no sería clasificado como un 
cambio. 
La segmentación del algoritmo se realiza dividiendo la trayectoria espectral de cada 
píxel a lo largo del tiempo. El LT divide esta trayectoria en segmentos lineales, que 
representan fases de estabilidad o momentos de cambio. Los períodos prolongados 
de estabilidad se caracterizan por segmentos de baja pendiente, mientras que las 
perturbaciones abruptas, como la deforestación, generan segmentos cortos y 
empinados, reflejando variaciones expresivas en los valores espectrales de los 
píxeles, como se muestra en la Figura 3. 
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Figura 3. Segmentación de series temporales de píxeles de LandTrendr. Los datos 
de la imagen se reducen a una sola banda o índice espectral y luego se dividen en 

una serie de segmentos de líneas rectas mediante la identificación de puntos de 
interrupción (vértices). 

Fuente: Adaptado de la Guía LT-GEE (disponible en: https://emapr.github.io/LT-GEE/landtrendr.html) 
 
La magnitud del cambio se mide mediante la comparación entre los valores del 
índice utilizado antes y después de la ocurrencia de la alteración. Por ejemplo, un 
píxel que presentaba NDVI = 0,8 (bosque) y pasó a NDVI = −0,1 (suelo expuesto, 
agua, etc.) presenta una magnitud de cambio de −0,9. 
En esta investigación, se definió como cambio una variación negativa mínima de 
0,1, siempre que no hubiera recuperación del índice en un período de un año. 
Como el LT almacena el valor absoluto del delta espectral, la alteración del ejemplo 
(un delta de 0,9) se presenta con una magnitud de 900, lo que indica una fuerte 
pérdida de la característica natural. Los parámetros de cambio utilizados en el 
modelo se configuraron para observar ocurrencias que presentaran únicamente 
pérdida de vegetación. Estas ocurrencias solo se consideraron si su magnitud 
(diferencia entre el valor del índice previo al cambio y el valor posterior al cambio) 
era mayor que 100. 
A partir de la modelización y los ajustes de parámetros en el código, el algoritmo 
LT-GEE proporcionó una imagen que contiene información sobre la pérdida de 
vegetación, con las siguientes bandas: (1) Año de detección del cambio; (2) 
Magnitud del cambio; (3) Duración del cambio; (4) Valor espectral del evento previo 
al cambio; (5) Tasa de cambio espectral para el evento (magnitud/duración); y (6) 
DSNR (Relación señal-ruido de la perturbación) (Cohen et al., 2018). Para el 
presente trabajo se consideraron los siguientes resultados: “Año de detección del 
cambio”, “Magnitud del cambio” y “Duración del cambio”. Estos datos se presentan 
en formato matricial (rejilla de píxeles) y contienen información sobre el año, la 
magnitud y la duración del cambio. El LT también permite observar la respuesta del 
índice NDVI de píxeles seleccionados a lo largo de la serie temporal mediante 
gráficos. 

2.3 Validación 
La validación de los resultados provenientes del LT se llevó a cabo en dos etapas 
complementarias. En primer lugar, se utilizó la herramienta “Puntos aleatorios en 
polígonos” del software de geoprocesamiento QGIS para generar 202 puntos 
aleatorios, divididos equitativamente (101 puntos) entre las clases ‘Cambio’ y ‘No 
Cambio’. Estos puntos sirvieron como base para la elaboración de la matriz de 
error, el cálculo del coeficiente Kappa (que indica el grado de concordancia del 
modelo; Cohen, 1960) y el cálculo de las métricas de exactitud, validando los 
resultados obtenidos con la modelización del algoritmo. 
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El número total de puntos se definió con base en recomendaciones metodológicas 
para la validación de mapeos de cambio, que sugieren muestras entre 150 y 250 
puntos para garantizar la robustez estadística sin comprometer la viabilidad 
operativa (Congalton; Green, 2019). El muestreo aleatorio dentro de cada clase 
asegura la independencia de las observaciones y permite inferencias válidas sobre 
la exactitud global del modelo. 
Posteriormente, para el análisis del cambio, se utilizó un código en GEE, el Time 
Series Inspector (Yin et al., 2020), que permitió la observación paralela de imágenes 
de los años 1985, 2010 y 2024, así como de los gráficos de la serie temporal para el 
índice NDVI. Tras este análisis, cada punto fue interpretado como ‘Cambio’ o ‘No 
Cambio’, de acuerdo con la referencia observada (realidad). Finalmente, se elaboró 
una matriz de error y se calcularon las exactitudes e indicadores para la validación 
de la clasificación. 

3​ Resultados 
Los resultados de la segmentación ejecutada por el algoritmo LandTrendr (LT) 
generaron los mapas de las bandas “Magnitud del Cambio” (Figura 4), “Año de 
Detección del Cambio” (Figura 5) y “Duración del Cambio” (Figura 6). Para el mapa 
de magnitud del cambio, las clases se dividieron en cinco intervalos; la primera 
clase (100–200) se definió para abarcar la mayor proporción de las magnitudes 
observadas, mientras que las demás clases siguieron intervalos de 200 (Figura 4). 
Para el mapa del período de ocurrencia del cambio, el intervalo de 40 años se 
subdividió en ocho clases regulares de cinco años (Figura 5). 
El análisis de la magnitud (Figura 4) muestra que las clases de menor impacto 
(100–200 y 200–400) fueron predominantes, representando el 46,7% y el 38% de 
las alteraciones, respectivamente. Los cambios de alta magnitud (800–961) fueron 
raros, correspondiendo a solo el 0,08% de los eventos. 
 

 
Figura 4: Mapa de magnitud del cambio – Región Administrativa XXIV (Barra da 

Tijuca, Río de Janeiro, RJ), de 1984 a 2024. 
Fuente: Autores, con datos del U.S. Geological Survey (USGS) y Google Earth Engine. 
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El análisis temporal (Figura 5) identificó que el período de mayor transformación 
ocurrió entre 1985 y 1990, cuando se alteraron 22,5 km², lo que equivale al 40,65% 
de todo el cambio detectado. Este valor es aproximadamente tres veces superior al 
del segundo período con mayor ocurrencia de cambios (2010–2015), que registró 
7,4 km² de cambio (13,33% del total). El período 1985–1990 también concentró la 
mayor proporción de la suma de las magnitudes de cambio (25,2% del total), 
seguido por 2010–2015 (16%). 
 

 
Figura 5: Mapa del período del cambio – Región Administrativa XXIV (Barra da 

Tijuca, Río de Janeiro, RJ), de 1984 a 2024. 
Fuente: Autores, con datos del U.S. Geological Survey (USGS) y Google Earth Engine. 

 
El análisis de la duración de los cambios para el área de Barra da Tijuca, 
visualizado en el mapeo de la Figura 6, indicó patrones complejos. Se observó una 
concentración de cambios con duraciones entre 1 y 9 años, lo que puede 
representar eventos de supresión de vegetación que se completan y se estabilizan 
en un nuevo tipo de cobertura (como suelo expuesto o el inicio de una construcción) 
dentro de este intervalo. 
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Figura 6: Mapa de duración del cambio – Región Administrativa XXIV (Barra da 

Tijuca, Río de Janeiro, RJ), de 1984 a 2024. 
Fuente: Autores, con datos del U.S. Geological Survey (USGS) y Google Earth Engine. 

 
Sin embargo, se destacó un segundo patrón con un mayor número de cambios, con 
duraciones muy largas, superiores a 34 años. Los datos sugieren que los cambios 
iniciados en el principal período de transformación (1985–1990) permanecen 
“activos” hasta la actualidad. En lugar de interpretarse como eventos abruptos y 
puntuales de deforestación, el algoritmo detecta estos píxeles como un proceso 
gradual y continuo de supresión de la vegetación. En estos casos, el índice NDVI 
probablemente nunca se estabilizó en un nuevo nivel bajo, continuando su 
disminución lenta a lo largo de toda la serie temporal analizada. 
Tras el análisis y la clasificación de los puntos de validación, se generó la matriz de 
error (Tabla 1). El análisis de esta matriz, junto con el índice Kappa, es esencial 
para identificar las principales fuentes de error del modelo, que pueden ser 
generadas tanto por el investigador como por el algoritmo, y es necesario para 
evaluar la calidad del mapeo (Zebende; Weckmüller; Vicens, 2020). 
Los errores de comisión y omisión resultantes de la validación del modelo fueron de 
0,12 y 0,05, respectivamente. El error de comisión (12%), obtenido a partir de la 
relación entre los falsos positivos (12) y el total de puntos clasificados como cambio 
(101), indica que el algoritmo clasificó incorrectamente algunas áreas como 
“Cambio”. La principal causa identificada para estos errores fue la influencia 
topográfica. Como señalan Ferraz y Vicens (2025), en regiones de ladera, la 
influencia de las sombras en los píxeles provoca una variación irregular del NDVI en 
la serie temporal, lo que dificulta la interpretación visual y lleva al modelo a detectar 
cambios inexistentes, como se muestra en la Figura 7. Además de este factor, 
también se observaron algunas regiones de afloramientos rocosos clasificadas 
erróneamente como cambio, probablemente por el mismo efecto de sombreado. 
Por su parte, el error de omisión (5%), calculado a partir de la relación entre los 
falsos negativos (5) y el total de cambios reales de referencia (94), se concentró en 
algunas regiones de manglar. En estos lugares, la detección de cambios reales se 
vio dificultada por la compleja firma espectral, influenciada tanto por la mezcla de 
vegetación (restinga y manglar) como por la condición hídrica de las lagunas, como 
se muestra en la Figura 8. Se infiere que el algoritmo no logró detectar estos 

10/17 



cambios reales debido a la lenta regeneración de la vegetación en estas áreas, que 
puede no haber sido capturada por los parámetros definidos en el modelo. 
 

Tabla 1: Matriz de error, cambio (positivo) y no cambio (negativo), y métricas 
aplicadas 

 

Referencia 
LandTrendr 

Cambio Sin cambio Total 

Cambio 89 5 94 

Sin cambio 12 96 108 

Total 101 101 202 

Acuracia global 0,92 
Kappa 0,83 

F1-score 0,91 
Acuracia del usuario 0,88 0,12 

Acuracia del productor 0,95 0,05 
Fuente: Los autores (2025) 

 

 
Figura 7: Ejemplo de Error de Comisión (Falso Positivo). (a) Imagen en color 

verdadero con el punto de referencia. (b) Clasificación del LT. (c) Serie histórica del 
índice NDVI para Landsat 4, 5, 7 y 8. (d) Serie temporal de la clasificación del LT, 

con una caída en el segundo segmento. 
Fuente: Los autores (2025) 
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Figura 8: Ejemplo de Error de Omisión (Falso Negativo). (a) Imagen en color 

verdadero con el punto de referencia. (b) Clasificación del LT. (c) Serie histórica del 
índice NDVI para Landsat 4, 5, 7 y 8. (d) Serie temporal de la clasificación del LT, 

con un único segmento. 
Fuente: Los autores (2025) 

 
 

4​ Discusión 
La aplicación de LandTrendr permitió identificar patrones de variación del NDVI a lo 
largo de la serie temporal y localizar áreas con cambios en la cobertura vegetal. 
Dado que la magnitud corresponde a la diferencia entre el valor del índice al inicio y 
al final de un segmento de cambio, valores entre 100 y 200, equivalentes a 
variaciones de aproximadamente 0,1 a 0,2 unidades de NDVI, no representan 
necesariamente una supresión efectiva y robusta de la vegetación. Tales 
variaciones pueden reflejar únicamente cambios sutiles en el vigor vegetativo o la 
presencia de formaciones más bajas y dispersas. Por esta razón, el estudio adoptó 
deliberadamente un umbral más conservador, a fin de no excluir estas transiciones 
más suaves. Además, el análisis del comportamiento espectral de la curva de los 
píxeles a lo largo del tiempo es fundamental para interpretar adecuadamente las 
dinámicas observadas y distinguir variaciones naturales de procesos de cambio real 
de la cobertura vegetal. 
Mientras que Yan y Wang (2021) adoptaron un enfoque de votación mayoritaria con 
el uso de siete bandas/índices para superar incertidumbres en la malla urbana de 
Karachi, los resultados de este estudio demuestran que, para el objetivo específico 
de detectar la supresión de la vegetación en Barra da Tijuca, el uso aislado del 
índice NDVI presentó un desempeño satisfactorio (Exactitud Global de 0,92). Esto 
sugiere que, en áreas con transiciones bien definidas entre bosque y ciudad, 
modelos menos complejos pueden ser tan eficientes como enfoques multiíndice. 
En el estudio se consideraron dos umbrales de detección: el área mínima de 
análisis y el umbral de magnitud del cambio. Dado que se utilizaron imágenes 
Landsat, el umbral de área mínima de análisis está representado por píxeles de 900 
m², considerando la resolución espacial de 30 m de esta serie, es decir, cada píxel 
mide 30 m × 30 m. El umbral de magnitud del cambio define la variación mínima del 
índice de vegetación NDVI necesaria para ser considerada una alteración relevante. 
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Cambios que cubren un área mucho menor que la del píxel (subpíxel) pueden no 
ser detectados, ya que su contribución espectral puede no ser representativa a esta 
resolución. En consecuencia, esta escala puede no ser representativa para cambios 
“finos”, como la expansión de asentamientos informales en laderas o alteraciones 
dentro de condominios (por ejemplo, la eliminación de jardines para la ampliación 
de viviendas). Los cambios en intervalos menores a un año tampoco son 
detectados por el modelo, dado que estas son análisis de alteraciones que duran 
más de un año y, en este estudio, sin recuperación del índice durante un período de 
al menos un año. 
Esta limitación de escala es un desafío común en estudios basados en Landsat, 
diferenciándose de enfoques que utilizan datos mensuales para detectar ciclos 
rápidos de construcción y demolición, como el propuesto por Hu et al. (2024) en 
Pekín. A diferencia del estudio chino, que se centró en la dinámica intraurbana de 
los edificios, el presente análisis priorizó la conversión definitiva de áreas naturales 
en áreas antrópicas, para lo cual la resolución temporal anual resultó adecuada. 
El análisis de la expansión urbana en la Región Administrativa XXIV – Barra da 
Tijuca, entre 1984 y 2024 mediante LT reveló un crecimiento acentuado. Este se 
observó principalmente en el período de 1985 a 1990, que correspondió al 40,65% 
del área total de los cambios clasificados por el algoritmo, impulsado por la intensa 
actividad inmobiliaria en la región. En la década de 1980, el Área de Planificación 4 
(AP4), que abarca los barrios de Barra da Tijuca, Jacarepaguá y Cidade de Deus, 
presentó una tasa de crecimiento anual de la población residente en favelas muy 
superior a la observada en las áreas ya consolidadas (AP1, AP2 y AP3), quedando 
solo por detrás de la AP5, que incluye barrios como Campo Grande, Bangu y 
Guaratiba (Lago, 1999). En 2004, la AP4 era el área de mayor crecimiento de la 
ciudad y representaba el vector de expansión urbana, desde la Zona Sur hacia 
Barra da Tijuca (Camarano et al., 2004). 
En el período de 2010 a 2015, el segundo con mayor proporción de área alterada 
según los resultados, esta proporción descendió al 13,33%. Este hecho está 
relacionado con los preparativos para los Juegos Olímpicos de 2016 celebrados en 
la ciudad de Río de Janeiro, lo que indica una desaceleración de la urbanización en 
esta región. Las principales alteraciones de este período fueron las obras de 
saneamiento básico en las lagunas de la región, la creación del Campo Olímpico de 
Golf (inaugurado en 2015) y la construcción del Grand Hyatt Hotel Rio de Janeiro 
(inaugurado en 2016). 
Aunque LandTrendr es eficaz para detectar estas pérdidas, la confusión espectral 
generada por la topografía sigue siendo un desafío. La identificación de falsos 
positivos en áreas de sombra de ladera en este estudio refuerza las observaciones 
de Ferraz y Vicens (2025) sobre la influencia del relieve en la variabilidad del NDVI, 
lo que indica que la aplicación del algoritmo en regiones de relieve accidentado, 
comunes en Río de Janeiro, requiere una validación cuidadosa de las áreas 
sombreadas. 
El análisis de la serie temporal de los sensores Landsat demostró que el período de 
1985 a 1990 fue el más impactante, con un área total de alteración de 
aproximadamente 22,5 km², siendo este resultado reflejo de la intensa expansión 
inmobiliaria en la región. Aunque el enfoque difiere de los estudios previamente 
citados para el análisis de áreas urbanas con LT, la segmentación temporal del 
algoritmo también fue capaz de detectar la expansión urbana con base en la 
degradación de las áreas vegetadas, observada a través del índice de vegetación 
NDVI. Esto se debe a la característica natural de la región, que en sus condiciones 
originales pertenecía al bioma de la Mata Atlántica, un bosque tropical.  

5​ Conclusión 
El presente estudio demostró la eficacia del algoritmo para detectar la evolución de 
las áreas antrópicas, tanto en regiones ya urbanizadas como periféricas, al utilizar 
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la pérdida de áreas naturalmente vegetadas como enfoque metodológico. Esto 
evidenció la pérdida de dichas áreas vegetadas debido a la urbanización. 
La segmentación temporal se mostró como una herramienta poderosa para el 
análisis de las trayectorias individuales de cada píxel y para la identificación de 
cambios sutiles a lo largo del tiempo. 
Los índices de exactitud demuestran la aplicabilidad del modelo en estudios futuros 
bajo condiciones similares y sugieren la revisión del valor mínimo de magnitud para 
una modelización que detecte de manera más eficaz las áreas construidas. 
Además, surge como posibilidad la implementación del índice de área construida 
NDBI (Normalized Difference Built-up Index) para su correlación con los datos 
resultantes de la modelización con el índice NDVI. 
Con una exactitud global de 0,92, un F1-score de 0,91 y un valor Kappa de 0,83, el 
estudio demostró la robustez del algoritmo en la identificación de patrones de 
cambio, señalando, no obstante, la necesidad de reevaluar los parámetros de 
clasificación para identificar las áreas construidas como consecuencia de áreas 
deforestadas. 
Al analizar los mapas, fue posible identificar patrones de forma coherentes con 
áreas construidas, lo que corrobora la posibilidad de utilizar este enfoque para 
identificar el avance de las áreas urbanas en regiones previamente vegetadas. 
La validación de la clasificación mediante la matriz de error y el índice Kappa 
refuerza la solidez de los resultados y sugiere la aplicabilidad del LT en otros 
contextos urbanos. De este modo, se recomienda el uso de esta herramienta para 
el monitoreo de cambios ambientales, ya que puede servir de apoyo a estrategias 
de políticas públicas orientadas a la conservación, la preservación ambiental y el 
desarrollo sostenible en esta región. 
Como tema para investigaciones futuras, se recomienda la implementación del 
índice NDBI directamente en el algoritmo. El objetivo sería permitir el análisis de 
correlaciones entre los resultados obtenidos en esta clasificación (basada en NDVI) 
y aquellos derivados del índice específico para áreas construidas (NDBI). 
Adicionalmente, se recomienda analizar correlaciones mediante el cruce de los 
datos obtenidos con series históricas de datos socioeconómicos, demográficos o de 
planificación urbana para la región.  
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