
 

 
 
 
 
 

 
 
 
 
 

 
Volume 

13 
Issue 

4 
*Corresponding author 

mataugusto1999@gmail.com 
Submitted 20 Nov 2025 
Accepted 07 Jan 2026 
Published 28 Jan 2026 

Citation 
SOUZA, M. A.; FERRAZ, D. 
P. G. B. Mapping vegetation 

loss due to urbanization in 
Barra da Tijuca 

(1984–2024) using the 
LandTrendr algorithm and 

Landsat time series. 
Coleção Estudos 

Cariocas, v. 13, n. 4, 2026. ​
DOI: 10.71256/19847203.13.4.196.2025 
The article was originally 

submitted in 
PORTUGUESE. 

Translations into other 
languages were reviewed 

and validated by the 
authors and the editorial 

team. Nevertheless, for 
the most accurate 

representation of the 
subject matter, readers 

are encouraged to consult 
the article in its original 

language. 
 
 

 
 

 

Mapping vegetation loss due to urbanization in Barra da 
Tijuca (1984–2024) using the LandTrendr algorithm and 
Landsat time series  

Mapeamento da perda de vegetação por urbanização na Barra da Tijuca 
(1984-2024) com o algoritmo LandTrendr e séries temporais Landsat 

Mapeo de la pérdida de vegetación por urbanización en Barra da Tijuca 
(1984–2024) con el algoritmo LandTrendr y series temporales Landsat 

Matheus Augusto de Souza1* and Debora da Paz Gomes Brandão Ferraz2 
1Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 274, Cidade Universitária, Rio 
de Janeiro/RJ, CEP: 21941-916, ORCID: 0009-0009-9759-6691, mataugusto1999@gmail.com  
2Universidade do Estado do Rio de Janeiro - Instituto de Geografia Cabo Frio, Rua Arízio Gomes da 
Costa, 186, Jardim Flamboyant, Cabo Frio/RJ, CEP 28905-320, ORCID: 0000-0003-2826-1715, 
debora.ferraz93@gmail.com  
 
 

Abstract 
Detecting changes in natural areas is essential for their preservation. This study 
evaluated deforestation associated with urbanization in Barra da Tijuca (Rio de 
Janeiro), using the LandTrendr algorithm on a time series of Landsat images 
(1985-2024). The method achieved high precision, with an overall accuracy of 0.92, 
an F1-score of 0.91, and a Kappa of 0.83. The results indicated that the period of 
greatest change occurred between 1985 and 1990, with 22.5 km² altered, a value 
three times higher than the period of 2010-2015 (7.4 km²). These transformations 
are associated with intense real estate expansion and urban development. 

Keywords:​ change detection, remote sensing, NDVI, Google Earth Engine 
 

Resumo 

A detecção de mudanças em áreas naturais é essencial para sua preservação. 
Este estudo avaliou o desflorestamento associado à urbanização na Barra da 
Tijuca (RJ), utilizando o algoritmo LandTrendr em séries temporais de imagens 
Landsat (1985 - 2024). O método alcançou alta precisão, com acurácia global de 
0,92, F1-score de 0,91 e Kappa de 0,83. Os resultados indicaram que o período de 
maior mudança ocorreu entre 1985 e 1990, com 22,5 km² alterados, valor três 
vezes superior ao período de 2010-2015 (7,4 km²). Estas transformações estão 
associadas à intensa expansão imobiliária e ao desenvolvimento urbano. 

Palavras-chave:​ detecção de mudanças, sensoriamento remoto, NDVI, Google 
Earth Engine 
 

Resumen 
Detectar los cambios en las áreas naturales es esencial para su conservación. Este 
estudio evaluó la deforestación asociada a la urbanización en Barra da Tijuca (Río 
de Janeiro), utilizando el algoritmo LandTrendr en series temporales de imágenes 
Landsat (1985-2024). El método alcanzó una alta precisión, con una exactitud 
global de 0,92, una puntuación F1 de 0,91 y un índice Kappa de 0,83. Los 
resultados indicaron que el periodo de mayor cambio se produjo entre 1985 y 1990, 
con 22,5 km² alterados, un valor tres veces superior al del periodo 2010-2015 (7,4 
km²). Estas transformaciones están asociadas a la intensa expansión inmobiliaria y 
al desarrollo urbano. 

Palabras clave:​ detección de cambios, teledetección, NDVI, Google Earth Engine 



 

1​ Introduction 
The Administrative Region XXIV – Barra da Tijuca, Rio de Janeiro (RJ), is 
characterized by its high population density and intense urbanization. The 
development of this region intensified in the 1970s, driven by Lúcio Costa’s Pilot 
Plan (1969), which aimed to transform it into a major urban center. The project 
encouraged the construction of large condominiums and the separation of urban 
sectors, as highlighted by Mendonça (2023). According to Abreu (2006), the 
combination of these characteristics attracted real estate developments and 
consolidated Barra da Tijuca as a highly valued area and a reference for 
high-income populations, reaching, in 2010, the third highest Municipal Human 
Development Index (HDI-M) in the city. 
Despite the accelerated development, monitoring of the region is essential, given 
the presence of important Conservation Units and Environmental Protection Areas 
(APA), such as Pedra Branca State Park, Pedra Branca APA, and Tijuca National 
Park, which harbor remnants of the Atlantic Forest, including ombrophilous forests, 
restingas, and mangroves. This biome is considered a global priority for biodiversity 
conservation, as described by Mazzurana (2016). However, evidence indicates 
increasing pressure on these protected areas. Sousa (2019) discusses the 
environmental impacts resulting from deforestation and irregular occupations, both 
by low-income populations and by high-end developments. 
The dynamics of irregular occupation are exacerbated by the actions of criminal 
groups, such as militias, in promoting illegal constructions and money laundering, 
facts corroborated by local news reports such as that by Peixoto and Nascimento 
(2023). Sousa (2019) highlights that the actions of these groups often respond to 
signals from the real estate market more quickly than the public authorities. These 
interventions, combined with the expansion of peripheral communities on slopes and 
formal real estate development, result in vegetation suppression and geological 
risks. Additionally, the irregular disposal of waste impacts the ecological integrity of 
mangroves, despite the natural resilience of this ecosystem, as highlighted by 
Soffiati (2024). 
In view of this socio-environmental challenge, it is essential to understand the 
dynamics of this expansion quantitatively in order to support territorial management 
(Tahir et al., 2025). The analysis of time series of remote sensing imagery is a 
robust tool for observing various phenomena that alter land use and land cover, 
whether due to environmental dynamics or human interventions, such as 
deforestation and urbanization (Zhu; Woodcock, 2014; Gómez et al., 2016). This 
analysis allows for a greater understanding of the phenomena, factors, and impacts 
of these changes. For the analysis of large volumes of remote sensing data (Big EO 
Data), the three-dimensional array model is the most appropriate and allows 
temporal classification in two ways: by classifying each time series individually and 
then merging the results in space (an approach that follows the Time-First paradigm, 
prioritizing time and then space); or by classifying each image separately and then 
comparing the resulting classifications over time (an approach that follows the 
Space-First paradigm, prioritizing space and then time) (Vinhas et al., 2016). 
According to Maus et al. (2016), a time series analysis can combine both temporal 
classifications, which was corroborated by Vinhas et al. (2016). 
This study uses the LandTrendr (LT) algorithm — Landsat-based Detection of 
Trends in Disturbance and Recovery — to identify and characterize periods of 
change in naturally vegetated areas and to measure the magnitude of changes that 
occurred between 1984 and 2024. LT is an effective spectro-temporal segmentation 
tool for detecting change patterns (Kennedy; Yang; Cohen, 2010). Although 
developed for forest monitoring, the algorithm has been widely applied in urban 
analyses. Yan and Wang (2021) used seven bands/indices in LT to obtain 
information on urban change in Karachi (Pakistan) from 2000 to 2020. They 
considered the majority value of the information as the result, in an approach similar 
to the majority voting method, which, according to the authors, effectively 
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overcomes uncertainty in extracting information on urban expansion compared to 
the use of a single band/index. Hu et al. (2024) used the shortwave infrared (SWIR) 
band in LT to extract building construction time from monthly Landsat time series 
data. This approach was applied to detect changes in building construction, 
demolition, and reconstruction in the city of Beijing (China) from 1990 to 2020. 
Mugiraneza, Nascetti, and Ban (2020) aimed at the continuous monitoring of urban 
land cover change trajectories. To this end, they merged LT results using multiple 
indices to reconstruct dense annual land cover maps for the period from 1990 to 
2019. 
Considering this context, the objective of the present study was to analyze land use 
and land cover changes in Barra da Tijuca between 1984 and 2024 using the 
LandTrendr algorithm. The research seeks to quantify and map the loss of 
vegetated areas due to urban expansion, validating the results through an error 
matrix and accuracy metrics to ensure precision in the detection of the mapped 
changes. 

2​ Materials and Methods 

2.1 Study Area 
The Administrative Region XXIV – Barra da Tijuca (Figure 1) corresponds to an area 
of approximately 165 km², located in Planning Area 4 (AP4) – the Southwest Zone of 
the municipality of Rio de Janeiro (RJ). This biome, due to the intense process of 
urbanization of large urban centers — mostly present in Brazilian coastal regions — 
has had its territory devastated, being the Brazilian biome that has suffered the most 
under the influence of urbanization. It is noteworthy that more than 60% of the 
Brazilian population resided within the domain of this biome in 2016, when it 
represented about 7% of its original forests, as presented by Mazzurana (2016). 
Locally, Barra da Tijuca is the 8th most populous region of the municipality, 
according to preliminary data from the 2022 Census (Prefeitura da Cidade do Rio de 
Janeiro, 2024), and recurrently faces problems related to urbanization, such as 
deforestation and the occupation of irregular housing in environmental protection 
areas, by populations of all income levels, as highlighted by Sousa (2018). The late 
urbanization process, which began shortly before the availability of Landsat data, 
allowed the selection of this area for observing the advance of anthropogenic areas 
over natural regions. Despite the limited territorial extent, the application of the 
algorithm proved feasible given the 30-meter spatial resolution of Landsat data, 
since the tool was specifically developed to operate with these sensors. In addition, 
the algorithm has been widely employed in the analysis of change trajectories in 
urban areas. 
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Figure 1: Study Area – Administrative Region of Barra da Tijuca, Rio de Janeiro (RJ) 

Source: Authors (2025) 
  

2.2 Materials 
The LandTrendr algorithm (Landsat-based Detection of Trends in Disturbance and 
Recovery), developed by Kennedy et al. (2010) and implemented in Google Earth 
Engine (LT-GEE), is an approach that enables a comprehensive and faster analysis 
than that based on a single current image (Kennedy et al., 2018). The general 
objective of LandTrendr is to characterize a temporal trajectory of data values using 
a sequence of connected linear segments, delimited by breakpoints or nodes. The 
algorithm operates with an analysis interval of one image per year, and it is up to the 
user to parameterize it to extract the most appropriate information according to the 
objective, varying according to the spectral band and/or index used. 
According to Câmara et al. (2016), the trajectory-based approach represents a new 
paradigm in change studies, highlighting time as the central variable, rather than 
space, as considered in many mapping approaches. This is known as “time first vs. 
space first,” in which the temporal response becomes the central element in the 
identification of certain phenomena (Weckmüller; Vicens, 2018). 
Temporal data are analyzed prior to spatial data, and time series analysis is 
prioritized. LT was originally developed for monitoring forest changes, such as 
deforestation, burning, and regeneration, and currently includes new spectral 
indices, such as the Normalized Difference Snow Index (NDSI) and the Normalized 
Difference Moisture Index (NDMI). The objective of this tool is to map changes in 
each pixel over time, defining change events when they occur. The mapped events 
generate bands such as “year of change,” “magnitude of change,” “pre-change 
value,” and “duration of change.” This study focused on the use of the “magnitude of 
change,” “year of change,” and “duration of change” bands. 
Landsat images were obtained free of charge from the USGS (United States 
Geological Survey) through the GEE (Google Earth Engine) Image Catalog. Landsat 
Surface Reflectance Tier 1 products were used, with a spatial resolution of 30 
meters and a temporal resolution of 16 days, for the analysis of a 40-year image 
time series. Although the TM (Thematic Mapper) sensor aboard Landsat 5 and the 
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ETM+ (Enhanced Thematic Mapper Plus) sensor aboard Landsat 7 are different, 
they operate in the same spectral bands, which ensures data integration. The OLI 
(Operational Land Imager) sensor aboard Landsat 8, whose operation began in 
2013 and which is also integrated into LT, operates in more spectral bands than its 
predecessors, but in spectral regions common to them. As this is a 
time-series-based method, it is necessary that the data be normalized for 
differences between sensors and be free of atmospheric noise (such as clouds and 
shadows), ensuring data consistency over the years. GEE provides surface 
reflectance data for Landsat sensors already with geometric and atmospheric 
correction, normalized in its catalog. 
The algorithm was implemented on the GEE platform, as proposed by Kennedy et 
al. (2018). Its execution requires the definition of three groups of parameters: 
collection parameters, execution parameters, and change parameters (Figure 2). 
The index used in the time series analysis to observe naturally vegetated areas that 
underwent suppression was the Normalized Difference Vegetation Index (NDVI – 
Equation 1). 
 

                                                 (1) 𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅−𝑅𝑒𝑑
𝑁𝐼𝑅+𝑅𝑒𝑑

   

 
Figure 2: Input Parameters of the LT-GEE Algorithm 

Source: Authors (2025) 

2.2.1 LT Parameterization 
As a collection parameter, the NDVI index was used. It is important to note that 
LandTrendr can be applied to different spectral metrics, including individual spectral 
bands and other spectral indices, such as, for example, the NBR index (Normalized 
Burn Ratio). The selection of this parameter is decisive for the interpretation of the 
detected change. For instance, when using NDVI, a decrease in pixel values implies 
the replacement or suppression of vegetation, whereas in bands such as shortwave 
infrared (SWIR), a decrease would indicate the opposite process (such as biomass 
recovery, loss of built-up area, or exposed soil), since non-vegetated surfaces tend 
to present higher reflectance at this wavelength. The choice of this index is justified 
by its importance in the analysis of a region naturally covered by Atlantic Forest. In 
addition, it is historically one of the most widely used indices in Remote Sensing 
analyses due to its simple formulation and the availability of long satellite time 
series, allowing the monitoring of phenology, productivity (biomass/primary 
production), drought detection and degradation, agricultural assessment, and 
large-scale ecological studies (Rouse et al., 1974; Ponzoni; Shimabukuro, 2010; 
Huang et al., 2021). 
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In the context of the study area, variations in NDVI values, although not directly 
representing the impact of urbanization, can be associated with its dynamics, since 
their variation over time may reflect changes in surface elements, such as 
vegetation cover, exposed soil, water bodies, or built-up areas. Thus, persistent 
reductions in NDVI values may indicate processes of vegetation replacement by 
anthropogenic surfaces. 
Additionally, a seasonal filter was applied by selecting only images acquired 
between May and June. This interval, which corresponds to the end of the autumn 
transition season and precedes winter, tends to present drier and cooler conditions, 
reducing atmospheric instability and, consequently, cloud occurrence, which helps to 
reduce noise in the time series. Although the algorithm allows working with multiple 
periods throughout the year, the choice of this seasonal subset aims to ensure 
greater spectral consistency among the analyzed years, in order to avoid some 
limitations, such as the risk of generating No-Data areas due to the occasional 
presence of shadows, clouds, or other noise in the few images available for this 
period. 
For the execution parameters, a maximum of three segments was defined, with the 
objective of detecting only changes that persisted. In this configuration, the period of 
stability prior to the change is defined as one segment, the transition of the change 
as a second segment, and the final segment represents the post-change period, in 
which the index remains stable and at a lower level than the previous one. This 
configuration allows the characterization of transitions such as, for example, an area 
with vegetation that becomes deforested and subsequently transforms into exposed 
soil prepared for a real estate development, based on a change recorded in the year 
2000. This facilitates the interpretation of the observed transformation processes. 
The “minimum of 6 observations” parameter highlights the need for the model to 
analyze the results at least six times in order to adjust its outputs. As the objective of 
the study was solely to observe areas that underwent changes related to vegetation 
loss to become another land use, a parameter was applied to avoid the detection of 
index recovery within a one-year period; that is, if there were recovery of the index 
during this period, the event would not be classified as a change. 
The algorithm segmentation is performed by dividing the spectral trajectory of each 
pixel over time. LT divides this trajectory into linear segments, representing phases 
of stability or moments of change. Prolonged periods of stability are characterized by 
low-slope segments, whereas abrupt disturbances, such as deforestation, generate 
short and steep segments, reflecting expressive variations in the spectral values of 
the pixels, as shown in Figure 3. 
 

 
Figura 3. Segmentation of pixel time series by LandTrendr. Image data are reduced 

to a single spectral band or index and then divided into a series of straight-line 
segments through breakpoint (vertex) identification. 

Source: Adapted from the LT-GEE Guide (available at: https://emapr.github.io/LT-GEE/landtrendr.html) 
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The magnitude of change is measured by comparing the index values used before 
and after the occurrence of the alteration. For example, a pixel that presented NDVI 
= 0.8 (forest) and changed to NDVI = −0.1 (exposed soil, water, etc.) exhibits a 
change magnitude of −0.9. 
In this research, a negative variation of at least 0.1 was defined as a change, 
provided that there was no recovery of the index within a one-year period. As LT 
stores the absolute value of the spectral delta, the alteration in the example (a delta 
of 0.9) is presented with a magnitude of 900, indicating a strong loss of the natural 
characteristic. The change parameters used in the model were configured to 
observe occurrences that presented only vegetation loss. These occurrences were 
only considered if their magnitude (difference between the pre-change and 
post-change index values) was greater than 100. 
Based on the modeling and parameter adjustments in the code, the LT-GEE 
algorithm provided an image containing information on vegetation loss, with the 
following bands: (1) Year of change detection; (2) Magnitude of change; (3) Duration 
of change; (4) Spectral value of the event prior to the change; (5) Rate of spectral 
change for the event (magnitude/duration); and (6) DSNR (Disturbance 
Signal-to-Noise Ratio) (Cohen et al., 2018). For the present study, the following 
outputs were considered: “Year of Change Detection,” “Magnitude of Change,” and 
“Duration of Change.” These data are presented in matrix format (pixel grid) and 
contain information on the year, magnitude, and duration of the change. LT also 
allows the observation of the NDVI response of selected pixels along the time series 
through graphs. 

2.3 Validation 
The validation of the results derived from LT was conducted in two complementary 
stages. First, the “Random Points in Polygons” tool in the QGIS geoprocessing 
software was used to generate 202 random points, equally divided (101 points) 
between the ‘Change’ and ‘No Change’ classes. These points served as the basis 
for producing the error matrix, calculating the Kappa Coefficient (which indicates the 
degree of agreement of the model; Cohen, 1960), and computing accuracy metrics, 
thus validating the results obtained with the algorithm modeling. 
The total number of points was defined based on methodological recommendations 
for change mapping validation, which suggest samples between 150 and 250 points 
to ensure statistical robustness without compromising operational feasibility 
(Congalton; Green, 2019). Random sampling within each class ensures the 
independence of observations and allows valid inferences about the overall 
accuracy of the model. 
Subsequently, for change analysis, a code in GEE — the Time Series Inspector (Yin 
et al., 2020) — was used, which allowed the parallel observation of images from the 
years 1985, 2010, and 2024, and the time series graphs for the NDVI index. After 
this analysis, each point was interpreted as ‘Change’ or ‘No Change’ according to 
the observed reference (ground truth). Finally, an error matrix was created, and 
accuracies and indicators were calculated to validate the classification. 

3​ Results 
The segmentation results produced by the LandTrendr (LT) algorithm generated 
maps of the “Magnitude of Change” (Figure 4), “Year of Change Detection” (Figure 
5), and “Duration of Change” (Figure 6) bands. For the magnitude of change map, 
the classes were divided into five intervals; the first class (100–200) was defined to 
encompass the largest proportion of the observed magnitudes, while the remaining 
classes followed 200-unit intervals (Figure 4). For the map of the period of change 
occurrence, the 40-year interval was subdivided into eight regular five-year classes 
(Figure 5). 
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The magnitude analysis (Figure 4) shows that the lower-impact classes (100–200 
and 200–400) were predominant, representing 46.7% and 38% of the changes, 
respectively. High-magnitude changes (800–961) were rare, accounting for only 
0.08% of the events. 
 

 
Figure 4: Map of change magnitude – Administrative Region XXIV (Barra da Tijuca, 

Rio de Janeiro, RJ), from 1984 to 2024. 
Source: Authors, based on data from the U.S. Geological Survey (USGS) and Google Earth Engine. 

 
The temporal analysis (Figure 5) identified that the period of greatest transformation 
occurred between 1985 and 1990, when 22.5 km² were altered, corresponding to 
40.65% of all detected change. This value is approximately three times higher than 
that of the second period with the highest occurrence of changes (2010–2015), 
which recorded 7.4 km² of change (13.33% of the total). The 1985-1990 period also 
concentrated the largest proportion of the sum of change magnitudes (25.2% of the 
total), followed by 2010–2015 (16%). 
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Figure 5: Map of change period – Administrative Region XXIV (Barra da Tijuca, Rio 

de Janeiro, RJ), from 1984 to 2024. 
Source: Authors, based on data from the U.S. Geological Survey (USGS) and Google Earth Engine. 

 
The analysis of change duration for the Barra da Tijuca area, visualized in the 
mapping shown in Figure 6, indicated complex patterns. A concentration of changes 
with durations between 1 and 9 years was observed, which may represent 
vegetation suppression events that are completed and stabilize into a new type of 
cover (such as exposed soil or the initial stage of construction) within this interval. 
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Figure 6: Map of change duration – Administrative Region XXIV (Barra da Tijuca, 

Rio de Janeiro, RJ), from 1984 to 2024. 
Source: Authors, based on data from the U.S. Geological Survey (USGS) and Google Earth Engine. 

 
However, a second pattern with a higher number of changes stood out, with very 
long durations exceeding 34 years. The data suggest that changes initiated during 
the main transformation period (1985–1990) remain “active” to the present day. 
Rather than being interpreted as abrupt and isolated deforestation events, the 
algorithm detects these pixels as a gradual and continuous process of vegetation 
suppression. In these cases, the NDVI index likely never stabilized at a new low 
level, continuing to decline slowly throughout the entire analyzed time series. 
After the analysis and classification of the validation points, the error matrix was 
generated (Table 1). The analysis of this matrix, together with the Kappa index, is 
essential to identify the main sources of model errors, which may be generated by 
both the researcher and the algorithm, and is necessary to assess the quality of the 
mapping (Zebende; Weckmüller; Vicens, 2020). 
The commission and omission errors resulting from the model validation were 0.12 
and 0.05, respectively. The commission error (12%), obtained from the ratio 
between false positives (12) and the total number of points classified as change 
(101), indicates that the algorithm incorrectly classified some areas as “Change.” 
The main cause identified for these errors was topographic influence. As identified 
by Ferraz and Vicens (2025), in slope regions, the influence of shadow on pixels 
causes irregular variation in NDVI in the time series, which hinders visual 
interpretation and leads the model to detect non-existent changes, as shown in 
Figure 7. In addition to this factor, some rocky outcrop areas were also incorrectly 
classified as change, probably due to the same shading effect. The omission error 
(5%), calculated from the ratio between false negatives (5) and the total number of 
real reference changes (94), was concentrated in some mangrove regions. In these 
locations, the detection of real changes was hindered by the complex spectral 
signature, which is influenced both by vegetation mixing (restinga and mangrove) 
and by the hydrological conditions of lagoons, as shown in Figure 8. It is inferred 
that the algorithm failed to detect these real changes due to the slow regeneration of 
vegetation in these areas, which may not have been captured by the parameters 
defined in the model. 
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Table 1: Error matrix, change (positive) and no change (negative), and applied 
metrics 

 

Reference 
LandTrendr 

Change No change Total 

Change 89 5 94 
No change 12 96 108 

Total 101 101 202 
Global accuracy 0.92 

Kappa 0.83 
F1-score 0.91 

User accuracy 0.88 0.12 
Producer accuracy 0.95 0.05 

Source: Authors (2025) 

 

 
Figure 7: Example of Commission Error (False Positive). (a) True-color image with 
the reference point. (b) LT classification. (c) Historical series of the NDVI index for 
Landsat 4, 5, 7, and 8. (d) LT classification time series, with a drop in the second 

segment. 
Source: Authors (2025) 
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Figure 8: Example of Omission Error (False Negative). (a) True-color image with the 

reference point. (b) LT classification. (c) Historical series of the NDVI index for 
Landsat 4, 5, 7, and 8. (d) LT classification time series, with a single segment. 

Source: Authors (2025) 

4​ Discussion 
The application of LandTrendr made it possible to identify patterns of variation in 
NDVI throughout the time series and to locate areas with changes in vegetation 
cover. Since magnitude corresponds to the difference between the index value at 
the beginning and at the end of a change segment, values between 100 and 200, 
equivalent to variations of approximately 0.1 to 0.2 NDVI units, do not necessarily 
represent an effective and robust suppression of vegetation. Such variations may 
reflect only subtle changes in vegetative vigor or the presence of lower and more 
sparse formations. For this reason, the study deliberately adopted a more 
conservative threshold, so as not to exclude these smoother transitions. In addition, 
analysis of the spectral behavior of pixel curves over time is essential to properly 
interpret the observed dynamics and to distinguish natural variations from processes 
of actual vegetation cover change. 
While Yan and Wang (2021) adopted a majority-voting approach using seven 
bands/indices to overcome uncertainties in the urban fabric of Karachi, the results of 
this study demonstrate that, for the specific objective of detecting vegetation 
suppression in Barra da Tijuca, the isolated use of the NDVI index showed 
satisfactory performance (Overall Accuracy of 0.92). This suggests that, in areas 
with well-defined forest–city transitions, less complex models can be as efficient as 
multi-index approaches. 
Two detection thresholds were considered in the study: the minimum analysis area 
and the change magnitude threshold. Because Landsat images were used, the 
minimum analysis area threshold is represented by pixels of 900 m², given the 30 m 
spatial resolution of this series, i.e., each pixel measures 30 m × 30 m. The change 
magnitude threshold defines the minimum variation of the NDVI vegetation index 
required to be considered a relevant change. Changes covering an area much 
smaller than a pixel (sub-pixel) may not be detected, since their spectral contribution 
may not be representative at this resolution. Consequently, this scale may not be 
representative for “fine” changes, such as the expansion of informal settlements on 
hillsides or alterations within condominiums (for example, the removal of gardens for 
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house expansion). Changes occurring within intervals shorter than one year are also 
not detected by the model, since these analyses target changes lasting more than 
one year and, in this study, without recovery of the index over a period of at least 
one year. 
This scale limitation is a common challenge in Landsat-based studies, differing from 
approaches that use monthly data to detect rapid construction and demolition 
cycles, as proposed by Hu et al. (2024) in Beijing. Unlike the Chinese study, which 
focused on intra-urban building dynamics, the present analysis prioritized the 
definitive conversion of natural areas into anthropogenic areas, for which annual 
temporal resolution proved adequate. 
The analysis of urban expansion in Administrative Region XXIV – Barra da Tijuca, 
between 1984 and 2024 using LT revealed pronounced growth. This was observed 
mainly in the period from 1985 to 1990, which accounted for 40.65% of the total 
area of changes classified by the algorithm, driven by intense real estate activity in 
the region. In the 1980s, Planning Area 4 (AP4), which includes the neighborhoods 
of Barra da Tijuca, Jacarepaguá, and Cidade de Deus, showed an annual growth 
rate of the population living in informal settlements far higher than those observed in 
already consolidated areas (AP1, AP2, and AP3), ranking behind only AP5, which 
includes neighborhoods such as Campo Grande, Bangu, and Guaratiba (Lago, 
1999). In 2004, AP4 was the fastest-growing area in the city and represented the 
vector of urban expansion, moving from the South Zone toward Barra da Tijuca 
(Camarano et al., 2004). 
In the period from 2010 to 2015, the second with the highest proportion of altered 
area according to the results, this proportion dropped to 13.33%. This fact is related 
to preparations for the 2016 Olympic Games held in the city of Rio de Janeiro, 
indicating a slowdown in urbanization in this region. The main changes during this 
period were basic sanitation works in the regional lagoons, the creation of the 
Olympic Golf Course (inaugurated in 2015), and the construction of the Grand Hyatt 
Hotel Rio de Janeiro (inaugurated in 2016). 
Although LandTrendr is effective in detecting these losses, spectral confusion 
caused by topography remains a challenge. The identification of false positives in 
hillside shadow areas in this study reinforces the observations of Ferraz and Vicens 
(2025) regarding the influence of relief on NDVI variability, indicating that application 
of the algorithm in rugged terrain regions, common in Rio de Janeiro, requires 
careful validation of shaded areas. 
Analysis of the Landsat sensor time series showed that the period from 1985 to 
1990 was the most impactful, with a total altered area of approximately 22.5 km², 
reflecting intense real estate expansion in the region. Although the approach differs 
from previously cited studies analyzing urban areas with LT, the algorithm’s temporal 
segmentation was also able to detect urban expansion based on the degradation of 
vegetated areas, observed through the NDVI vegetation index. This is due to the 
natural characteristic of the region, which in its original conditions belonged to the 
Atlantic Forest biome, a tropical forest.  

5​ Conclusion 
The present study demonstrated the effectiveness of the algorithm in detecting the 
evolution of anthropogenic areas, both in already urbanized and peripheral regions, 
by using the loss of naturally vegetated areas as a methodological approach. This 
evidenced the loss of these vegetated areas due to urbanization. 
Temporal segmentation proved to be a powerful tool for analyzing the individual 
trajectories of each pixel and for identifying subtle changes over time. 
The accuracy indices demonstrate the applicability of the model in future studies 
under similar conditions and suggest revising the minimum magnitude value for a 
modeling approach that more effectively detects built-up areas. In addition, the 
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implementation of the built-up area index NDBI (Normalized Difference Built-up 
Index) emerges as a possibility for correlation with the data resulting from modeling 
with the NDVI index. 
With an overall accuracy of 0.92, an F1-score of 0.91, and a Kappa value of 0.83, 
the study demonstrated the robustness of the algorithm in identifying change 
patterns, while also pointing to the need to reassess the classification parameters to 
identify built-up areas resulting from deforested areas. 
By analyzing the maps, it was possible to identify shape patterns consistent with 
built-up areas, which corroborates the possibility of using this approach to identify 
the advance of urban areas into previously vegetated regions. 
Validation of the classification using the error matrix and the Kappa index reinforces 
the robustness of the results and suggests the applicability of LT in other urban 
contexts. Thus, the use of this tool is recommended for monitoring environmental 
changes, as it can support public policy strategies aimed at conservation, 
environmental preservation, and sustainable development in this region. 
As a topic for future research, the implementation of the NDBI index directly in the 
algorithm is recommended. The objective would be to allow the analysis of 
correlations between the results obtained in this classification (based on NDVI) and 
those derived from the index specific to built-up areas (NDBI). Additionally, it is 
recommended to analyze correlations by cross-referencing the obtained data with 
historical series of socioeconomic, demographic, or urban planning data for the 
region.  
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