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Abstract

Detecting changes in natural areas is essential for their preservation. This study
evaluated deforestation associated with urbanization in Barra da Tijuca (Rio de
Janeiro), using the LandTrendr algorithm on a time series of Landsat images
(1985-2024). The method achieved high precision, with an overall accuracy of 0.92,
an F1-score of 0.91, and a Kappa of 0.83. The results indicated that the period of
greatest change occurred between 1985 and 1990, with 22.5 km? altered, a value
three times higher than the period of 2010-2015 (7.4 km?). These transformations
are associated with intense real estate expansion and urban development.

Keywords: change detection, remote sensing, NDVI, Google Earth Engine

Resumo

A deteccdo de mudangas em areas naturais é essencial para sua preservacgao.
Este estudo avaliou o desflorestamento associado a urbanizagdo na Barra da
Tijuca (RJ), utilizando o algoritmo LandTrendr em séries temporais de imagens
Landsat (1985 - 2024). O método alcangou alta precisdo, com acuracia global de
0,92, F1-score de 0,91 e Kappa de 0,83. Os resultados indicaram que o periodo de
maior mudanga ocorreu entre 1985 e 1990, com 22,5 km? alterados, valor trés
vezes superior ao periodo de 2010-2015 (7,4 km?). Estas transformacdes estédo
associadas a intensa expansao imobiliaria e ao desenvolvimento urbano.

Palavras-chave: deteccdao de mudangas, sensoriamento remoto, NDVI, Google
Earth Engine

Resumen

Detectar los cambios en las areas naturales es esencial para su conservacion. Este
estudio evaluo la deforestacion asociada a la urbanizacion en Barra da Tijuca (Rio
de Janeiro), utilizando el algoritmo LandTrendr en series temporales de imagenes
Landsat (1985-2024). EI método alcanzé una alta precisién, con una exactitud
global de 0,92, una puntuacién F1 de 0,91 y un indice Kappa de 0,83. Los
resultados indicaron que el periodo de mayor cambio se produjo entre 1985 y 1990,
con 22,5 km? alterados, un valor tres veces superior al del periodo 2010-2015 (7,4
km?). Estas transformaciones estan asociadas a la intensa expansion inmobiliaria y
al desarrollo urbano.

Palabras clave: deteccion de cambios, teledeteccion, NDVI, Google Earth Engine



1 Introduction

The Administrative Region XXIV — Barra da Tijuca, Rio de Janeiro (RJ), is
characterized by its high population density and intense urbanization. The
development of this region intensified in the 1970s, driven by Lucio Costa’s Pilot
Plan (1969), which aimed to transform it into a major urban center. The project
encouraged the construction of large condominiums and the separation of urban
sectors, as highlighted by Mendonga (2023). According to Abreu (2006), the
combination of these characteristics attracted real estate developments and
consolidated Barra da Tijuca as a highly valued area and a reference for
high-income populations, reaching, in 2010, the third highest Municipal Human
Development Index (HDI-M) in the city.

Despite the accelerated development, monitoring of the region is essential, given
the presence of important Conservation Units and Environmental Protection Areas
(APA), such as Pedra Branca State Park, Pedra Branca APA, and Tijuca National
Park, which harbor remnants of the Atlantic Forest, including ombrophilous forests,
restingas, and mangroves. This biome is considered a global priority for biodiversity
conservation, as described by Mazzurana (2016). However, evidence indicates
increasing pressure on these protected areas. Sousa (2019) discusses the
environmental impacts resulting from deforestation and irregular occupations, both
by low-income populations and by high-end developments.

The dynamics of irregular occupation are exacerbated by the actions of criminal
groups, such as militias, in promoting illegal constructions and money laundering,
facts corroborated by local news reports such as that by Peixoto and Nascimento
(2023). Sousa (2019) highlights that the actions of these groups often respond to
signals from the real estate market more quickly than the public authorities. These
interventions, combined with the expansion of peripheral communities on slopes and
formal real estate development, result in vegetation suppression and geological
risks. Additionally, the irregular disposal of waste impacts the ecological integrity of
mangroves, despite the natural resilience of this ecosystem, as highlighted by
Soffiati (2024).

In view of this socio-environmental challenge, it is essential to understand the
dynamics of this expansion quantitatively in order to support territorial management
(Tahir et al., 2025). The analysis of time series of remote sensing imagery is a
robust tool for observing various phenomena that alter land use and land cover,
whether due to environmental dynamics or human interventions, such as
deforestation and urbanization (Zhu; Woodcock, 2014; Gémez et al., 2016). This
analysis allows for a greater understanding of the phenomena, factors, and impacts
of these changes. For the analysis of large volumes of remote sensing data (Big EO
Data), the three-dimensional array model is the most appropriate and allows
temporal classification in two ways: by classifying each time series individually and
then merging the results in space (an approach that follows the Time-First paradigm,
prioritizing time and then space); or by classifying each image separately and then
comparing the resulting classifications over time (an approach that follows the
Space-First paradigm, prioritizing space and then time) (Vinhas et al., 2016).
According to Maus et al. (2016), a time series analysis can combine both temporal
classifications, which was corroborated by Vinhas et al. (2016).

This study uses the LandTrendr (LT) algorithm — Landsat-based Detection of
Trends in Disturbance and Recovery — to identify and characterize periods of
change in naturally vegetated areas and to measure the magnitude of changes that
occurred between 1984 and 2024. LT is an effective spectro-temporal segmentation
tool for detecting change patterns (Kennedy; Yang; Cohen, 2010). Although
developed for forest monitoring, the algorithm has been widely applied in urban
analyses. Yan and Wang (2021) used seven bands/indices in LT to obtain
information on urban change in Karachi (Pakistan) from 2000 to 2020. They
considered the majority value of the information as the result, in an approach similar
to the majority voting method, which, according to the authors, effectively
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overcomes uncertainty in extracting information on urban expansion compared to
the use of a single band/index. Hu et al. (2024) used the shortwave infrared (SWIR)
band in LT to extract building construction time from monthly Landsat time series
data. This approach was applied to detect changes in building construction,
demolition, and reconstruction in the city of Beijing (China) from 1990 to 2020.
Mugiraneza, Nascetti, and Ban (2020) aimed at the continuous monitoring of urban
land cover change trajectories. To this end, they merged LT results using multiple
indices to reconstruct dense annual land cover maps for the period from 1990 to
2019.

Considering this context, the objective of the present study was to analyze land use
and land cover changes in Barra da Tijuca between 1984 and 2024 using the
LandTrendr algorithm. The research seeks to quantify and map the loss of
vegetated areas due to urban expansion, validating the results through an error
matrix and accuracy metrics to ensure precision in the detection of the mapped
changes.

2 Materials and Methods

2.1 Study Area

The Administrative Region XXIV — Barra da Tijuca (Figure 1) corresponds to an area
of approximately 165 km?, located in Planning Area 4 (AP4) — the Southwest Zone of
the municipality of Rio de Janeiro (RJ). This biome, due to the intense process of
urbanization of large urban centers — mostly present in Brazilian coastal regions —
has had its territory devastated, being the Brazilian biome that has suffered the most
under the influence of urbanization. It is noteworthy that more than 60% of the
Brazilian population resided within the domain of this biome in 2016, when it
represented about 7% of its original forests, as presented by Mazzurana (2016).
Locally, Barra da Tijuca is the 8th most populous region of the municipality,
according to preliminary data from the 2022 Census (Prefeitura da Cidade do Rio de
Janeiro, 2024), and recurrently faces problems related to urbanization, such as
deforestation and the occupation of irregular housing in environmental protection
areas, by populations of all income levels, as highlighted by Sousa (2018). The late
urbanization process, which began shortly before the availability of Landsat data,
allowed the selection of this area for observing the advance of anthropogenic areas
over natural regions. Despite the limited territorial extent, the application of the
algorithm proved feasible given the 30-meter spatial resolution of Landsat data,
since the tool was specifically developed to operate with these sensors. In addition,
the algorithm has been widely employed in the analysis of change trajectories in
urban areas.
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Figure 1: Study Area — Administrative Region of Barra da Tijuca, Rio de Janeiro (RJ)
Source: Authors (2025)

2.2 Materials

The LandTrendr algorithm (Landsat-based Detection of Trends in Disturbance and
Recovery), developed by Kennedy et al. (2010) and implemented in Google Earth
Engine (LT-GEE), is an approach that enables a comprehensive and faster analysis
than that based on a single current image (Kennedy et al., 2018). The general
objective of LandTrendr is to characterize a temporal trajectory of data values using
a sequence of connected linear segments, delimited by breakpoints or nodes. The
algorithm operates with an analysis interval of one image per year, and it is up to the
user to parameterize it to extract the most appropriate information according to the
objective, varying according to the spectral band and/or index used.

According to Camara et al. (2016), the trajectory-based approach represents a new
paradigm in change studies, highlighting time as the central variable, rather than
space, as considered in many mapping approaches. This is known as “time first vs.
space first,” in which the temporal response becomes the central element in the
identification of certain phenomena (Weckmidiller; Vicens, 2018).

Temporal data are analyzed prior to spatial data, and time series analysis is
prioritized. LT was originally developed for monitoring forest changes, such as
deforestation, burning, and regeneration, and currently includes new spectral
indices, such as the Normalized Difference Snow Index (NDSI) and the Normalized
Difference Moisture Index (NDMI). The objective of this tool is to map changes in
each pixel over time, defining change events when they occur. The mapped events
generate bands such as “year of change,” “magnitude of change,” “pre-change
value,” and “duration of change.” This study focused on the use of the “magnitude of
change,” “year of change,” and “duration of change” bands.

Landsat images were obtained free of charge from the USGS (United States
Geological Survey) through the GEE (Google Earth Engine) Image Catalog. Landsat
Surface Reflectance Tier 1 products were used, with a spatial resolution of 30
meters and a temporal resolution of 16 days, for the analysis of a 40-year image
time series. Although the TM (Thematic Mapper) sensor aboard Landsat 5 and the
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ETM+ (Enhanced Thematic Mapper Plus) sensor aboard Landsat 7 are different,
they operate in the same spectral bands, which ensures data integration. The OLI
(Operational Land Imager) sensor aboard Landsat 8, whose operation began in
2013 and which is also integrated into LT, operates in more spectral bands than its
predecessors, but in spectral regions common to them. As this is a
time-series-based method, it is necessary that the data be normalized for
differences between sensors and be free of atmospheric noise (such as clouds and
shadows), ensuring data consistency over the years. GEE provides surface
reflectance data for Landsat sensors already with geometric and atmospheric
correction, normalized in its catalog.

The algorithm was implemented on the GEE platform, as proposed by Kennedy et
al. (2018). Its execution requires the definition of three groups of parameters:
collection parameters, execution parameters, and change parameters (Figure 2).
The index used in the time series analysis to observe naturally vegetated areas that
underwent suppression was the Normalized Difference Vegetation Index (NDVI —
Equation 1).

NDVI = NIR—Red (1)

NIR+Red

o Parametros de
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Figure 2: Input Parameters of the LT-GEE Algorithm
Source: Authors (2025)

2.2.1 LT Parameterization

As a collection parameter, the NDVI index was used. It is important to note that
LandTrendr can be applied to different spectral metrics, including individual spectral
bands and other spectral indices, such as, for example, the NBR index (Normalized
Burn Ratio). The selection of this parameter is decisive for the interpretation of the
detected change. For instance, when using NDVI, a decrease in pixel values implies
the replacement or suppression of vegetation, whereas in bands such as shortwave
infrared (SWIR), a decrease would indicate the opposite process (such as biomass
recovery, loss of built-up area, or exposed soil), since non-vegetated surfaces tend
to present higher reflectance at this wavelength. The choice of this index is justified
by its importance in the analysis of a region naturally covered by Atlantic Forest. In
addition, it is historically one of the most widely used indices in Remote Sensing
analyses due to its simple formulation and the availability of long satellite time
series, allowing the monitoring of phenology, productivity (biomass/primary
production), drought detection and degradation, agricultural assessment, and
large-scale ecological studies (Rouse et al., 1974; Ponzoni; Shimabukuro, 2010;
Huang et al., 2021).
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In the context of the study area, variations in NDVI values, although not directly
representing the impact of urbanization, can be associated with its dynamics, since
their variation over time may reflect changes in surface elements, such as
vegetation cover, exposed soil, water bodies, or built-up areas. Thus, persistent
reductions in NDVI values may indicate processes of vegetation replacement by
anthropogenic surfaces.

Additionally, a seasonal filter was applied by selecting only images acquired
between May and June. This interval, which corresponds to the end of the autumn
transition season and precedes winter, tends to present drier and cooler conditions,
reducing atmospheric instability and, consequently, cloud occurrence, which helps to
reduce noise in the time series. Although the algorithm allows working with multiple
periods throughout the year, the choice of this seasonal subset aims to ensure
greater spectral consistency among the analyzed years, in order to avoid some
limitations, such as the risk of generating No-Data areas due to the occasional
presence of shadows, clouds, or other noise in the few images available for this
period.

For the execution parameters, a maximum of three segments was defined, with the
objective of detecting only changes that persisted. In this configuration, the period of
stability prior to the change is defined as one segment, the transition of the change
as a second segment, and the final segment represents the post-change period, in
which the index remains stable and at a lower level than the previous one. This
configuration allows the characterization of transitions such as, for example, an area
with vegetation that becomes deforested and subsequently transforms into exposed
soil prepared for a real estate development, based on a change recorded in the year
2000. This facilitates the interpretation of the observed transformation processes.
The “minimum of 6 observations” parameter highlights the need for the model to
analyze the results at least six times in order to adjust its outputs. As the objective of
the study was solely to observe areas that underwent changes related to vegetation
loss to become another land use, a parameter was applied to avoid the detection of
index recovery within a one-year period; that is, if there were recovery of the index
during this period, the event would not be classified as a change.

The algorithm segmentation is performed by dividing the spectral trajectory of each
pixel over time. LT divides this trajectory into linear segments, representing phases
of stability or moments of change. Prolonged periods of stability are characterized by
low-slope segments, whereas abrupt disturbances, such as deforestation, generate
short and steep segments, reflecting expressive variations in the spectral values of
the pixels, as shown in Figure 3.
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Figura 3. Segmentation of pixel time series by LandTrendr. Image data are reduced
to a single spectral band or index and then divided into a series of straight-line

segments through breakpoint (vertex) identification.
Source: Adapted from the LT-GEE Guide (available at: https://emapr.github.io/LT-GEE/landtrendr.html)
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The magnitude of change is measured by comparing the index values used before
and after the occurrence of the alteration. For example, a pixel that presented NDVI
= 0.8 (forest) and changed to NDVI = -0.1 (exposed soil, water, etc.) exhibits a
change magnitude of —0.9.

In this research, a negative variation of at least 0.1 was defined as a change,
provided that there was no recovery of the index within a one-year period. As LT
stores the absolute value of the spectral delta, the alteration in the example (a delta
of 0.9) is presented with a magnitude of 900, indicating a strong loss of the natural
characteristic. The change parameters used in the model were configured to
observe occurrences that presented only vegetation loss. These occurrences were
only considered if their magnitude (difference between the pre-change and
post-change index values) was greater than 100.

Based on the modeling and parameter adjustments in the code, the LT-GEE
algorithm provided an image containing information on vegetation loss, with the
following bands: (1) Year of change detection; (2) Magnitude of change; (3) Duration
of change; (4) Spectral value of the event prior to the change; (5) Rate of spectral
change for the event (magnitude/duration); and (6) DSNR (Disturbance
Signal-to-Noise Ratio) (Cohen et al., 2018). For the present study, the following
outputs were considered: “Year of Change Detection,” “Magnitude of Change,” and
“Duration of Change.” These data are presented in matrix format (pixel grid) and
contain information on the year, magnitude, and duration of the change. LT also
allows the observation of the NDVI response of selected pixels along the time series
through graphs.

2.3 Validation

The validation of the results derived from LT was conducted in two complementary
stages. First, the “Random Points in Polygons” tool in the QGIS geoprocessing
software was used to generate 202 random points, equally divided (101 points)
between the ‘Change’ and ‘No Change’ classes. These points served as the basis
for producing the error matrix, calculating the Kappa Coefficient (which indicates the
degree of agreement of the model; Cohen, 1960), and computing accuracy metrics,
thus validating the results obtained with the algorithm modeling.

The total number of points was defined based on methodological recommendations
for change mapping validation, which suggest samples between 150 and 250 points
to ensure statistical robustness without compromising operational feasibility
(Congalton; Green, 2019). Random sampling within each class ensures the
independence of observations and allows valid inferences about the overall
accuracy of the model.

Subsequently, for change analysis, a code in GEE — the Time Series Inspector (Yin
et al., 2020) — was used, which allowed the parallel observation of images from the
years 1985, 2010, and 2024, and the time series graphs for the NDVI index. After
this analysis, each point was interpreted as ‘Change’ or ‘No Change’ according to
the observed reference (ground truth). Finally, an error matrix was created, and
accuracies and indicators were calculated to validate the classification.

3 Results

The segmentation results produced by the LandTrendr (LT) algorithm generated
maps of the “Magnitude of Change” (Figure 4), “Year of Change Detection” (Figure
5), and “Duration of Change” (Figure 6) bands. For the magnitude of change map,
the classes were divided into five intervals; the first class (100-200) was defined to
encompass the largest proportion of the observed magnitudes, while the remaining
classes followed 200-unit intervals (Figure 4). For the map of the period of change
occurrence, the 40-year interval was subdivided into eight regular five-year classes
(Figure 5).
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The magnitude analysis (Figure 4) shows that the lower-impact classes (100-200
and 200-400) were predominant, representing 46.7% and 38% of the changes,
respectively. High-magnitude changes (800-961) were rare, accounting for only
0.08% of the events.

MAGNITUDE DAS MUDANCAS (1985 - 2024)
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Figure 4: Map of change magnitude — Administrative Region XXIV (Barra da Tijuca,

Rio de Janeiro, RJ), from 1984 to 2024.
Source: Authors, based on data from the U.S. Geological Survey (USGS) and Google Earth Engine.

The temporal analysis (Figure 5) identified that the period of greatest transformation
occurred between 1985 and 1990, when 22.5 km? were altered, corresponding to
40.65% of all detected change. This value is approximately three times higher than
that of the second period with the highest occurrence of changes (2010-2015),
which recorded 7.4 km? of change (13.33% of the total). The 1985-1990 period also
concentrated the largest proportion of the sum of change magnitudes (25.2% of the
total), followed by 2010-2015 (16%).
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Figure 5: Map of change period — Administrative Region XXIV (Barra da Tijuca, Rio

de Janeiro, RJ), from 1984 to 2024.

Source: Authors, based on data from the U.S. Geological Survey (USGS) and Google Earth Engine.

The analysis of change duration for the Barra da Tijuca area, visualized in the
mapping shown in Figure 6, indicated complex patterns. A concentration of changes
with durations between 1 and 9 years was observed, which may represent
vegetation suppression events that are completed and stabilize into a new type of
cover (such as exposed soil or the initial stage of construction) within this interval.
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DURACAO DA MUDANCA (1985 - 2024)

43.500"W 43.450%W 43.400%W 43 350%W 43.300%W

r
L
§

22.950°5

23.000°5

Legenda
m Barra da Tijuca
Duracao da Mudanca
&0 2 oW mi-9
9-17
17 - 24
FONTE DS DADOS: 24 _ 32
PAAGENS: LANDRAT FORNECIDAS FELD: LS. GECLOGICAL SURVEY (LISGS). )
PRODUTOS GERADOS UTILIZANDO O ALGORITMO LANDTREMDR (KENNEDY ET AL, 2010) kO GOOGLE EARTH ENGINE. BEH = 32
SISTEMA DE COORDENADAS GEOGRAFICAS, e —
DATURM: SIRGEAS J000,
AUTOR: MATHELRS ALIGLUISTO DE SOURTA.

Figure 6: Map of change duration — Administrative Region XXIV (Barra da Tijuca,

Rio de Janeiro, RJ), from 1984 to 2024.
Source: Authors, based on data from the U.S. Geological Survey (USGS) and Google Earth Engine.

23.050°5

However, a second pattern with a higher number of changes stood out, with very
long durations exceeding 34 years. The data suggest that changes initiated during
the main transformation period (1985-1990) remain “active” to the present day.
Rather than being interpreted as abrupt and isolated deforestation events, the
algorithm detects these pixels as a gradual and continuous process of vegetation
suppression. In these cases, the NDVI index likely never stabilized at a new low
level, continuing to decline slowly throughout the entire analyzed time series.

After the analysis and classification of the validation points, the error matrix was
generated (Table 1). The analysis of this matrix, together with the Kappa index, is
essential to identify the main sources of model errors, which may be generated by
both the researcher and the algorithm, and is necessary to assess the quality of the
mapping (Zebende; Weckmdiller; Vicens, 2020).

The commission and omission errors resulting from the model validation were 0.12
and 0.05, respectively. The commission error (12%), obtained from the ratio
between false positives (12) and the total number of points classified as change
(101), indicates that the algorithm incorrectly classified some areas as “Change.”
The main cause identified for these errors was topographic influence. As identified
by Ferraz and Vicens (2025), in slope regions, the influence of shadow on pixels
causes irregular variation in NDVI in the time series, which hinders visual
interpretation and leads the model to detect non-existent changes, as shown in
Figure 7. In addition to this factor, some rocky outcrop areas were also incorrectly
classified as change, probably due to the same shading effect. The omission error
(5%), calculated from the ratio between false negatives (5) and the total number of
real reference changes (94), was concentrated in some mangrove regions. In these
locations, the detection of real changes was hindered by the complex spectral
signature, which is influenced both by vegetation mixing (restinga and mangrove)
and by the hydrological conditions of lagoons, as shown in Figure 8. It is inferred
that the algorithm failed to detect these real changes due to the slow regeneration of
vegetation in these areas, which may not have been captured by the parameters
defined in the model.
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Table 1: Error matrix, change (positive) and no change (negative), and applied

metrics
LandTrendr
Reference
Change No change Total
Change 89 5 94

No change 12 96 108
Total 101 101 202

Global accuracy 0.92

Kappa 0.83

F1-score 0.91
User accuracy 0.88 0.12
Producer accuracy 0.95 0.05

Source: Authors (2025)
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Figure 7: Example of Commission Error (False Positive). (a) True-color image with
the reference point. (b) LT classification. (c) Historical series of the NDVI index for
Landsat 4, 5, 7, and 8. (d) LT classification time series, with a drop in the second

segment.
Source: Authors (2025)
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Figure 8: Example of Omission Error (False Negative). (a) True-color image with the
reference point. (b) LT classification. (c) Historical series of the NDVI index for

Landsat 4, 5, 7, and 8. (d) LT classification time series, with a single segment.
Source: Authors (2025)

4 Discussion

The application of LandTrendr made it possible to identify patterns of variation in
NDVI throughout the time series and to locate areas with changes in vegetation
cover. Since magnitude corresponds to the difference between the index value at
the beginning and at the end of a change segment, values between 100 and 200,
equivalent to variations of approximately 0.1 to 0.2 NDVI units, do not necessarily
represent an effective and robust suppression of vegetation. Such variations may
reflect only subtle changes in vegetative vigor or the presence of lower and more
sparse formations. For this reason, the study deliberately adopted a more
conservative threshold, so as not to exclude these smoother transitions. In addition,
analysis of the spectral behavior of pixel curves over time is essential to properly
interpret the observed dynamics and to distinguish natural variations from processes
of actual vegetation cover change.

While Yan and Wang (2021) adopted a majority-voting approach using seven
bands/indices to overcome uncertainties in the urban fabric of Karachi, the results of
this study demonstrate that, for the specific objective of detecting vegetation
suppression in Barra da Tijuca, the isolated use of the NDVI index showed
satisfactory performance (Overall Accuracy of 0.92). This suggests that, in areas
with well-defined forest—city transitions, less complex models can be as efficient as
multi-index approaches.

Two detection thresholds were considered in the study: the minimum analysis area
and the change magnitude threshold. Because Landsat images were used, the
minimum analysis area threshold is represented by pixels of 900 m?, given the 30 m
spatial resolution of this series, i.e., each pixel measures 30 m x 30 m. The change
magnitude threshold defines the minimum variation of the NDVI vegetation index
required to be considered a relevant change. Changes covering an area much
smaller than a pixel (sub-pixel) may not be detected, since their spectral contribution
may not be representative at this resolution. Consequently, this scale may not be
representative for “fine” changes, such as the expansion of informal settlements on
hillsides or alterations within condominiums (for example, the removal of gardens for
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house expansion). Changes occurring within intervals shorter than one year are also
not detected by the model, since these analyses target changes lasting more than
one year and, in this study, without recovery of the index over a period of at least
one year.

This scale limitation is a common challenge in Landsat-based studies, differing from
approaches that use monthly data to detect rapid construction and demolition
cycles, as proposed by Hu et al. (2024) in Beijing. Unlike the Chinese study, which
focused on intra-urban building dynamics, the present analysis prioritized the
definitive conversion of natural areas into anthropogenic areas, for which annual
temporal resolution proved adequate.

The analysis of urban expansion in Administrative Region XXIV — Barra da Tijuca,
between 1984 and 2024 using LT revealed pronounced growth. This was observed
mainly in the period from 1985 to 1990, which accounted for 40.65% of the total
area of changes classified by the algorithm, driven by intense real estate activity in
the region. In the 1980s, Planning Area 4 (AP4), which includes the neighborhoods
of Barra da Tijuca, Jacarepagua, and Cidade de Deus, showed an annual growth
rate of the population living in informal settlements far higher than those observed in
already consolidated areas (AP1, AP2, and AP3), ranking behind only AP5, which
includes neighborhoods such as Campo Grande, Bangu, and Guaratiba (Lago,
1999). In 2004, AP4 was the fastest-growing area in the city and represented the
vector of urban expansion, moving from the South Zone toward Barra da Tijuca
(Camarano et al., 2004).

In the period from 2010 to 2015, the second with the highest proportion of altered
area according to the results, this proportion dropped to 13.33%. This fact is related
to preparations for the 2016 Olympic Games held in the city of Rio de Janeiro,
indicating a slowdown in urbanization in this region. The main changes during this
period were basic sanitation works in the regional lagoons, the creation of the
Olympic Golf Course (inaugurated in 2015), and the construction of the Grand Hyatt
Hotel Rio de Janeiro (inaugurated in 2016).

Although LandTrendr is effective in detecting these losses, spectral confusion
caused by topography remains a challenge. The identification of false positives in
hillside shadow areas in this study reinforces the observations of Ferraz and Vicens
(2025) regarding the influence of relief on NDVI variability, indicating that application
of the algorithm in rugged terrain regions, common in Rio de Janeiro, requires
careful validation of shaded areas.

Analysis of the Landsat sensor time series showed that the period from 1985 to
1990 was the most impactful, with a total altered area of approximately 22.5 km?,
reflecting intense real estate expansion in the region. Although the approach differs
from previously cited studies analyzing urban areas with LT, the algorithm’s temporal
segmentation was also able to detect urban expansion based on the degradation of
vegetated areas, observed through the NDVI vegetation index. This is due to the
natural characteristic of the region, which in its original conditions belonged to the
Atlantic Forest biome, a tropical forest.

5 Conclusion

The present study demonstrated the effectiveness of the algorithm in detecting the
evolution of anthropogenic areas, both in already urbanized and peripheral regions,
by using the loss of naturally vegetated areas as a methodological approach. This
evidenced the loss of these vegetated areas due to urbanization.

Temporal segmentation proved to be a powerful tool for analyzing the individual
trajectories of each pixel and for identifying subtle changes over time.

The accuracy indices demonstrate the applicability of the model in future studies
under similar conditions and suggest revising the minimum magnitude value for a
modeling approach that more effectively detects built-up areas. In addition, the
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implementation of the built-up area index NDBI (Normalized Difference Built-up
Index) emerges as a possibility for correlation with the data resulting from modeling
with the NDVI index.

With an overall accuracy of 0.92, an F1-score of 0.91, and a Kappa value of 0.83,
the study demonstrated the robustness of the algorithm in identifying change
patterns, while also pointing to the need to reassess the classification parameters to
identify built-up areas resulting from deforested areas.

By analyzing the maps, it was possible to identify shape patterns consistent with
built-up areas, which corroborates the possibility of using this approach to identify
the advance of urban areas into previously vegetated regions.

Validation of the classification using the error matrix and the Kappa index reinforces
the robustness of the results and suggests the applicability of LT in other urban
contexts. Thus, the use of this tool is recommended for monitoring environmental
changes, as it can support public policy strategies aimed at conservation,
environmental preservation, and sustainable development in this region.

As a topic for future research, the implementation of the NDBI index directly in the
algorithm is recommended. The objective would be to allow the analysis of
correlations between the results obtained in this classification (based on NDVI) and
those derived from the index specific to built-up areas (NDBI). Additionally, it is
recommended to analyze correlations by cross-referencing the obtained data with
historical series of socioeconomic, demographic, or urban planning data for the
region.

References

ABREU, M. A. Evolugao Urbana do Rio de Janeiro. 4a Edigao. Instituto Municipal
de Urbanismo Pereira Passos (IPP), Rio de Janeiro, RJ, 2006.

CAMARA, G. et al. Using dynamic geospatial ontologies to support information
extraction from big Earth observation data sets. International Conference on
GlIScience Short Paper Proceedings, v. 1, n. 1, 2016.

CAMARANO, A. A. et al. Tendéncias demograficas no municipio do Rio de Janeiro.
Colegao Estudos Cariocas, v. 4, n. 1, p. 47-47, 2004.

COHEN, J. A coefficient of agreement for nominal scales. Educational and
psychological measurement, v. 20, n. 1, p. 37-46, 1960.

COHEN, W. B. et al. A LandTrendr multispectral ensemble for forest disturbance
detection. Remote Sensing of Environment, v. 205, p. 131-140, 2018.

CONGALTON, R. G.; GREEN, K. Assessing the Accuracy of Remotely Sensed
Data: Principles and Practices. 32 edicdo. Boca Raton: CRC Press, 2019.

COSTA, L. Plano Piloto para urbanizagcao da baixada compreendida entre a
Barra da Tijuca, o Pontal de Sernambetiba e Jacarepagua. Agéncia Jornalistica
Image, Rio de Janeiro, 1969.

FERRAZ, D. P. G. B.; VICENS, R. S. Comparison between machine learning
classification and trajectory-based change detection for identifying eucalyptus areas
in Landsat time series. Remote Sensing Applications: Society and Environment,
v. 37, [s.n.], 2025.

GOMEZ, C.; WHITE, J. C.; WULDER, M. A. Optical remotely sensed time series
data for land cover classification: A review. ISPRS Journal of Photogrammetry
and Remote Sensing, v. 116, p. 55-72, 2016.

HU, T. et al. Extraction of Building Construction Time Using the LandTrendr Model
With Monthly Landsat Time Series Data. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, v. 17, p. 18335-18350, 2024.

HUANG, S. et al. A commentary review on the use of normalized difference
vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry
14/17



Research, v. 32, n. 1, p. 1-6, 2021.

KENNEDY, R. E.; YANG, Z.; COHEN, W. B. Detecting trends in forest disturbance
and recovery using vyearly Landsat time series: 1. LandTrendr—Temporal
segmentation algorithms. Remote Sensing of Environment, v. 114, n. 12, p.
2897-2910, 2010.

KENNEDY, R.E. et al. Implementation of the LandTrendr Algorithm on Google Earth
Engine. Remote Sensing, [s.l.]. v. 10, n. 691, p. 1-10, 2018.

LAGO, Luciana Corréa. Desigualdade socioespacial e mobilidade residencial: a
metrépole do Rio de Janeiro nos anos 80. Cadernos Metrépole, [S. |.], n. 02, p.
11-40, 1999.

MAUS, V. et al. A Time-Weighted Dynamic Time Warping Method for Land-Use and
Land-Cover Mapping. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, v. 9, n. 8, p. 3729-3739, 2016.

MAZZURANA, E. R. Mata Atlantica: patriménio natural, cultural e biolégico do
Brasil. Revista Encontros Teolégicos, [S. |.], v. 31, n. 3, 2016.

MENDONCA, V. C. Do Sertao Carioca aos condominios da Barra da Tijuca:
uma viagem em torno dos territérios. Tese (Doutorado em Psicologia Social) —
Instituto de Psicologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro,
RJ. 247 p. 2023.

MUGIRANEZA, T.; NASCETTI, A.; BAN, Y. Continuous monitoring of urban land
cover change trajectories with landsat time series and landtrendr-google earth
engine cloud computing. Remote Sensing, v. 12, n. 18, p. 2883, 2020.

PEIXOTO, G.; NASCIMENTO, R. Prédio irregular avaliado em R$ 4 milhdes é
demolido na llha da Gigoia. G1 Rio de Janeiro, 15/08/2023. Available at:
https://g1.globo.com/rj/rio-de-janeiro/noticia/2023/08/15/predio-irregular-e-demolido-
na-ilha-da-gigoia.ghtml. Accessed on: 10 nov. 2025.

PONZONI, F. J.; SHIMABUKURO, Y. E. Sensoriamento Remoto no Estudo da
Vegetagdo. Sao José dos Campos/SP: Instituto Nacional de Pesquisas Espaciais —
INPE, 2010.

Prefeitura da Cidade do Rio de Janeiro. Censo 2022: Populagao e domicilios por
bairros (dados preliminares). Available at:
https://www.data.rio/datasets/fd354740f1934bf5bf8e9b0e2b509aa9 2/explore?show
Table=true. Accessed on: 18 oct. 2024.

Prefeitura da Cidade do Rio de Janeiro. IDH-M: Uma andlise do indice de
Desenvolvimento Humano Municipal para a Cidade do Rio de Janeiro. Available at:
http://rio.rj.gov.br/dIstatic/10112/6165511/4162028/analise_idhm_rio_v4 compur.pdf.
Accessed on: 18 oct. 2024.

ROUSE, J. W. et al. Monitoring Vegetation systems in the Great Plains with ERTS,
Proceedings. Third Earth Resources Technology Satellite-1 Symposium,
Greenbelt: NASA SP-351, p. 3010-3017, 1974.

SOFFIATI, A. Manguezais do Estado do Rio de Janeiro. Revista Viséo
Socioambiental, 08/03/2024. Available at:
https://visaosocioambiental.com.br/manguezais-do-estado-do-rio-de-janeiro/.
Accessed on: 10 nov. 2025.

SOUSA, A. V. de. Do peixe ao lixo: transformagdes urbanas e seus efeitos na
producao de espagos sociais no ltanhanga. 2018. 23f. Trabalho de Conclusao de
Curso (Especializagdo em Politica e Planejamento Urbano) — IPPUR/UFRJ, Rio de
Janeiro, 2018.

SOUSA, A. V. Transformacgdes urbanisticas, praticas estatais e mercado imobiliario
na Lagoa da Tijuca/RJ. XIll Reunido de Antropologia do Mercosul. Porto Alegre,
RS. 20 p. 2019.

1517



TAHIR, Z. et al. Predicting land use and land cover changes for sustainable land
management using CA-Markov modelling and GIS techniques. Scientific Reports,
v. 15, n. 1, p. 3271, 2025.

VINHAS, L. et al. Web Services for Big Earth Observation data. Geoinfo, p.
166-177, 2016.

WECKMULLER, R.; VICENS, R. S. As geotecnologias e a detecgdo de trajetorias
evolutivas da paisagem: possibilidades metodologicas e aplicagdes. Revista
Brasileira de Geografia Fisica, v. 11, n. 6, p. 2140-2159, 2018.

YAN, X.; WANG, J. Dynamic monitoring of urban built-up object expansion
trajectories in Karachi, Pakistan with time series images and the LandTrendr
algorithm. Scientific reports, v. 11, n. 1, p. 23118, 2021.

YIN, H. et al.. Monitoring cropland abandonment with Landsat time series. Remote
Sensing of Environment, v. 246, p. 111873, 2020.

ZEBENDE, J. V.; WECKMULLER, R.; VICENS, R. S. Analise da Trajetoria Evolutiva
da Cobertura Florestal do Municipio de Teresépolis/RJ utilizando o Algoritmo
LandTrendr. Anuario do Instituto de Geociéncias - UFRJ. p. 316-324, 2020.

ZHU, Z.; WOODCOCK, C. E. Continuous change detection and classification of land
cover using all available Landsat data. Remote Sensing of Environment, v. 144, p.
152-171, 2014.

About the Authors

Matheus Augusto de Souza is an undergraduate student in Mathematical and Earth
Sciences at the Federal University of Rio de Janeiro (UFRJ), with an emphasis on
Remote Sensing and Geoprocessing. Since June 2024, he has been working as an
Undergraduate Research fellow at the ESPACO Laboratory of Remote Sensing and
Environmental Studies (UFRJ). During his training, he served as a teaching
assistant for the courses Geoprocessing and Remote Sensing Project at UFRJ. His
academic experience focuses on the analysis of spatial data and satellite image
time series, using software such as ArcGIS, QGIS, and Google Earth Engine, with
emphasis on the LandTrendr algorithm for change detection. He has skills in
programming languages such as Python, R, and JavaScript. He currently works as a
Development Assistant at a geotechnologies company.

Debora da Paz Gomes Brandao Ferraz holds a PhD in Geography from the Federal
Fluminense University (UFF). She obtained her bachelor’s degree (2014) and
master’s degree (2017) in Geography from the same institution. During her training,
she was affiliated with the Physical Geography Laboratory at UFF, where she
developed activities related to remote sensing and geoprocessing. Her experience
focuses on mapping and analyzing forest dynamics in the state of Rio de Janeiro,
using satellite imagery and software such as ArcGIS, QGIS, eCognition, and Google
Earth Engine, with emphasis on the LandTrendr algorithm for change detection. She
served as a substitute professor at the Federal University of Rio de Janeiro (UFRJ)
in the field of Geotechnologies in 2024. She is currently a substitute professor at the
State University of Rio de Janeiro (UERJ), Cabo Frio campus.

Author Contributions

Conceptualization, [D.P.G.B.F., M.A.S.]; methodology, [D.P.G.B.F., M.A.S.]; software,
[M.A.S.]; validation, [M.A.S.]; formal analysis, [M.A.S., D.P.G.B.F.]; investigation,
[M.A.S., D.P.G.B.F]; data curation, [M.A.S., D.P.G.B.F.]; writing—original draft
preparation, [M.A.S.]; writing—review and editing, [D.P.G.B.F.]; supervision,
[D.P.G.B.F.]. All authors have read and agreed to the published version of the
manuscript.

16/17



Data Availability

The processing scripts and the resulting data from this study are
publicly available in the GitHub repository, accessible at:
https://github.com/mattaugustt/landtrendr_barra_da_tijuca_cec

Acknowledgements

The authors acknowledge the contributions of the Federal University of Rio de
Janeiro (UFRJ), especially the ESPACO Laboratory of Remote Sensing and
Environmental Studies, for providing the necessary infrastructure for the
development of this research.

Conflicts of Interest
The authors declare no conflicts of interest.

About Colegcao Estudos Cariocas

Colecdo Estudos Cariocas (ISSN 1984-7203) is a publication dedicated to studies
and research on the Municipality of Rio de Janeiro, affiliated with the Pereira Passos
Institute (IPP) of the Rio de Janeiro City Hall.

Its objective is to disseminate technical and scientific production on topics related to
the city of Rio de Janeiro, as well as its metropolitan connections and its role in
regional, national, and international contexts. The collection is open to all
researchers (whether municipal employees or not) and covers a wide range of fields
— provided they partially or fully address the spatial scope of the city of Rio de
Janeiro.

Articles must also align with the Institute’s objectives, which are:
1. to promote and coordinate public intervention in the city’s urban space;

2. to provide and integrate the activities of the city’s geographic, cartographic,
monographic, and statistical information systems;

3. to support the establishment of basic guidelines for the city’s socioeconomic
development.

Special emphasis will be given to the articulation of the articles with the city's
economic development proposal. Thus, it is expected that the multidisciplinary
articles submitted to the journal will address the urban development needs of Rio de
Janeiro.

1717



	Abstract 
	Resumo 
	1​Introduction 

