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Abstract

To demonstrate applicable improvements to the urban cadastre of the city of Rio de Janeiro,
state-of-the-art techniques for 3D building modeling were investigated, focusing on the
geometric detailing of roofs. The experiments subjected data from a previous cadastre to
automated processing, using open-source software, to increase the level of detail of
pre-existing features, optimizing resources, in a pioneering initiative for large cities in the
Global South. The results are useful for various environmental studies, by incorporating new
characteristics into urban records, and highlight human intervention as an essential element
for ensuring quality.

Keywords: 3D building model, level of detail, CityGML

Resumo

Para demonstrar melhorias aplicaveis ao cadastro urbano da cidade do Rio de Janeiro,
foram investigadas técnicas do estado da arte para modelagem 3D de edificagbes, com
foco no detalhamento geométrico das coberturas. Os experimentos submeteram dados de
um cadastro anterior a processamento automatizado, com software livre, para aumento do
nivel de detalhamento de feigdes pré-existentes, otimizando recursos, em uma iniciativa
pioneira para grandes cidades do Sul Global. Os resultados séo Uteis a diversos estudos
ambientais, ao incorporar novas caracteristicas aos registros urbanos, e valorizam a
atuacdo humana como elemento essencial para a garantia da qualidade.

Palavras-chave: modelo de edificagbes 3D, nivel de detalhamento, CityGML

Resumen

Para demostrar mejoras aplicables al catastro urbano de la ciudad de Rio de Janeiro, se
investigaron técnicas de vanguardia para el modelado 3D de edificios, centrandose en el
detalle geométrico de las cubiertas. Los experimentos sometieron datos de un catastro
previo a procesamiento automatizado mediante software de cédigo abierto para aumentar el
nivel de detalle de los elementos preexistentes y optimizar recursos, en una iniciativa
pionera para las grandes ciudades del Sur Global. Los resultados son utiles para diversos
estudios ambientales, al incorporar nuevas caracteristicas a los registros urbanos y
destacar la intervencién humana como un elemento esencial para garantizar la calidad.

Palabras clave: modelo de edificio 3D, nivel de detalle, CityGML



1 Introduction

The form of buildings can vary significantly among urban settings, which may be
associated with factors such as the level of local development, topography, climate,
culture, and the age of buildings. Urban asset management requires feature-rich,
up-to-date, and accurate models, within margins compatible with the problem under
study. In addition to the planimetric built area, these models must consider the
altimetric variations of urban objects. Although the development and maintenance of
three-dimensional city models represent challenges that have been partially
addressed, recent efforts in computer-vision-based photogrammetry provide
evidence of scientific interest in improving the results offered (Lussange et al.,
2025).

Remote sensing techniques provide relevant sources for the generation of 3D
models, although cadastral surveys also contribute to their enrichment. Images and
point clouds obtained by sensors onboard aerial or orbital platforms preserve
records (raw or minimally processed) of real built forms. However, their analysis
requires intensive computational processing. Developing applications based on
these datasets requires the individualization of objects of interest, such as buildings,
and the abstraction of features. The greater the level of preserved features, the
greater the human and computational efforts tend to be.

By representing the built environment and other urban elements with reasonable
accuracy, three-dimensional city models attract the interest of public managers,
private companies, and civil society. According to Biljecki et al. (2015), the growing
interest in these models stems from their wide range of applications, such as
cadastre, virtual visits, change detection, urban planning, mobility analysis,
emergency response, environmental studies, and quality-of-life assessment. In
environmental studies, buildings or parts of them, such as roofs and fagades, form
physical barriers in various phenomena. Their surfaces are far less permeable than
tree vegetation and more complex than terrain and other elements of urban
infrastructure. This motivates the discussion on the levels of detail required and
feasible for their representation in the dynamics of phenomena applied to different
environmental studies.

With regard to solar exposure and the formation of shaded areas, for example,
buildings interact by reducing the incidence of direct solar radiation and contributing
to diffuse and/or specular propagation (depending on the surface), requiring
computation through algorithms such as ray tracing (Robinson; Stone, 2004). This
use of building models can enable the production of radiation maps for estimating
shading over time, with direct applications in energy efficiency, the identification of
urban heat islands, and thermal comfort estimation. This allows the analysis of
microclimatic impacts due to the addition of new buildings or the simulation of
vertical growth within the pre-existing urban volume (Falcao et al., 2025). In addition,
building roof models can also be enriched through the mapping of superstructures
such as chimneys, tree canopies, skylights, or machinery, improving estimates of
solar potential (Krapf et al., 2022b).

Similarly, these algorithms can be used in studies on noise propagation and noise
pollution, which requires the estimation of reflection and absorption indices of
mechanical waves for different classes of objects on the terrain (Stoter et al., 2020).
In telecommunications projects, this can be adapted to verify the coverage or
occlusion of electromagnetic waves, when planning device configurations and
assessing interference related to signal shadows and the impacts of new
constructions, supporting the optimization and operation of urban networks (Seilov
etal., 2021).

In the contexts of urban ventilation and pollutant dispersion, buildings directly
influence velocity fields, turbulence, and atmospheric flow dispersion. These effects
are usually investigated through computational fluid dynamics and, in more detailed
applications, through large eddy simulation (Buccolieri; Hang, 2019), which allow a
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more faithful representation of the interaction between urban morphology and
transport processes.

In turn, flood dynamics are traditionally based on terrain elevation models and
estimates of land use, permeabilityy, and retention capacities. The explicit
incorporation of building geometry makes it possible to define patterns of capture,
storage, and routing of surface runoff more accurately. Recognizing these patterns
contributes to flood risk analysis and the development of strategies for sustainable
urban drainage (Wang, C. et al., 2019). This also allows refinements in the
assessment of the contribution of green roofs, detention reservoirs, and rainwater
harvesting systems to urban resilience (Angrill et al., 2017).

Defining levels of detail for city models helps formalize needs and capacities for
abstracting the urban environment when surveying the requirements of each
application. Global map services, for example, benefit from the availability of
building projections offered in models with lower levels of detail, due to the more
compact volumetry of these representations. In addition, these services benefit from
the wide availability of algorithms capable of automating feature capture at this level
of detail, even in regions mapped using different Earth Observation techniques. In
turn, block models, which comprise an intermediate level of detail, may be more
suitable for strategic planning analyses and rapid visualization. Finally, building
models at higher levels, with detailed geometries and semantic distinction of
observed surfaces (roofs and facades), serve engineering applications,
environmental simulations, and other spatial data queries that require high fidelity to
the real world.

The relevance of efforts to provide official models at different levels of detail is
evident in the limitations of traditional urban cadastres in adequately representing
building geometry and semantics (Biljecki et al., 2015). This deficiency hinders the
adoption of three-dimensional urban models at more advanced levels of detail. To
the best of our knowledge, when available, high-level-of-detail vector models are
mostly concentrated in cities of the Global North (Wysocki et al., 2024). In
metropolitan cities such as Rio de Janeiro, it is of interest to assess the applicability
of techniques successfully employed with large volumes of data in other regions.

Taking as a reference the dataset accumulated over years to update urban cadastral
bases and the systems published by the municipal administration, it can be
concluded that the building model is compatible with an intermediate level of detail.
Thus, the vector building records of the current municipal cadastre can be delivered
at a block level of detail, more specifically at Level of Detail 1 (LoD 1) of the
CityGML standard (Groger; Plimer, 2012). This standard, maintained by the Open
Geospatial Consortium (OGC), defines levels of detail and a conceptual model for
the representation, storage, and exchange of urban data.

An example of the application of the LoD 1 model, demonstrated in the Reviver
Centro' project of the Municipal Secretariat for Urban Development and Licensing,
makes it possible to visualize properties under monitoring in the city. The main
resource used by the viewer is the municipal vector building database of the City of
Rio de Janeiro, which contains planimetric and altimetric information on building
footprints. Although useful for rapid visualizations, the block model is not
recommended for applications sensitive to roof shapes. Asymmetric constructions,
as illustrated in Figure 1, or complex ones may be difficult to represent under this
type of modeling.

In this study, the main objective was to propose an approach for cadastral updating
aimed at incorporating new attributes into urban records, enabling compatibility of
the building model at Level of Detail 2 (LoD 2). This level assumes the explicit
representation of roof geometries and their semantic separation from fagades and
other construction elements. To assess the feasibility of the proposal, municipal data
were processed using open-source software originally developed to enable such

' Reviver Centro’s web portal is available at https://reviver-centro-pcrj.hub.arcgis.com.
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models in the Netherlands? (Peters et al., 2022).
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Figure 1: Three different possibilities for block modeling of a building (saltbox)
Source: (Stoter et al., 2020)

The remaining sections of this article are organized as follows: Section 2 addresses
related work on the same topic, emphasizing the theoretical context; Section 3
characterizes the municipal datasets and justifies the choices of spatial subsets;
Section 4 presents the methodology employed to apply the algorithms to the new
dataset; Section 5 presents and discusses the results obtained; and Section 6
provides the final considerations of this study.

2 Related work

The literature on the production of 3D building models presents different approaches
that may result in different levels of detail. Starting with the data sources addressed,
these may be derived either from aerial or orbital surveys or from terrestrial surveys.
Optionally, pre-existing data from formal building cadastres may be incorporated,
such as architectural plans, multipurpose cadastres, real estate records, and official
cartographic databases that describe the geometry, use, and occupation of
buildings. These approaches may also differ according to their methodological
bases, which may focus either on data or on models, and it is also possible to find
hybrid approaches or ones that are difficult to categorize according to this
data—model dichotomy.

2.1 Characterization of data sources and processing approaches

According to Wang, R. (2013), high-resolution image datasets can be rich in
semantic information but depend on specific methods to retrieve three-dimensional
geometry. On the other hand, point clouds obtained from LiDAR (Light Detection
and Ranging) sensors directly represent geometry, but typically achieve lower
resolutions and limited semantics. Thus, to perform 3D modeling from images,
machine learning techniques may be used to estimate elevations monocularly, or
techniques for measuring three-dimensional coordinates in stereoscopic pairs may
be employed, using photogrammetric principles that generally allow a better
understanding of the accuracy associated with the derived elevations.

Nevertheless, it is possible to integrate images and point clouds through registration
processes that establish correspondences between coordinates projected onto the
image plane and coordinates in the geometric space of the real world, as preserved
in point clouds. This integration characterizes a multimodal data fusion approach, in
which complementary information from different sensors is consistently combined. In
general, such processes can be used both to virtually increase the spatial resolution
of point clouds and to perform image-driven segmentation, simultaneously exploiting
geometric and semantic features stored in the datasets.

In approaches that operate directly on point clouds, central steps include data
classification and filtering in order to separate buildings from other objects present in
the urban environment. As highlighted by Wang, R., Peethambaran, and Chen
(2018), this type of approach depends on the quality and resolution of the input data.

2 Information about the 3DBAG models is available at https://3d.bk.tudelft.nl/projects/3dbag
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In general, the process involves the segmentation of coherent surfaces or their
edges — for example, using planar or linear primitives — followed by the
establishment of topological relationships among the identified objects.

In contrast, model-driven approaches focus on the selection and fitting of
parameterizable geometric structures to represent buildings as topologically
consistent objects. In the case of roof models, these structures may include
pyramids, sets of one or more planes, and, to account for specific construction
styles, geometries such as cones, cylinders, or spheroids. However, this strategy
tends to be limited by the number of predefined shapes and the possible
combinations among them.

Despite the dichotomy between the approaches presented in the literature, data and
models are intrinsically related in the observed processes. The diagram in Figure 2
provides an overview of inputs and outputs and their relationships in the studied
processes. It can be said that data are structured to formalize models. Therefore,
some processes are difficult to categorize or should be treated as hybrid
approaches. They may lead to balanced strategies between accuracy and the ability
to model a wide variety of buildings, considering adaptations that help overcome the
discussed limitations.

Primitivas basicas | __——  Processos
Entradas L | \I

Imagens <———> Nuvens de pontos
elou

I/ Saidas

Registros vetoriais

l\ Estruturas consistentes
— 1/ \AA QA

Figure 2: General overview of inputs and outputs of 3D building modeling processes

using Earth Observation data and the objects addressed in different approaches.
Source: Authors (2025)

Assuming a data-driven approach, the segmentation of geometric primitives can be
performed both on point clouds and on images. Hao, Zhang, and Cao (2016), for
example, propose a technique for stereoscopic pairs of aerial images that uses a
feature-matching method (points and lines) between multi-angle aerial images of the
same scene. Using classical photogrammetric models and matching rules, lines are
grouped and their heights are extracted by spatial intersection. Another proposal by
Mohammadi, Samadzadegan, and Reinartz (2019) targets high-resolution satellite
images and derives a disparity map using Hirschmiiller's (2011) semi-global
matching. In this case, segmentation is performed using a graph-cut kernel in
feature space, which includes radiometric bands, the disparity map, and a visible
vegetation index.

Recently, the adoption of deep neural networks has stood out in segmentation
approaches that precede the reconstruction of urban building roofs. This may
involve, for example, isolating buildings in point clouds using clustering techniques
and segmenting individual buildings with a RANSAC-based algorithm (RANdom
SAmple Consensus) (Sun et al., 2024). In satellite imagery, a similar two-step
approach has been proposed: first, buildings are segmented, and then predefined
geometric structures are fitted onto digital surface models derived from the image
set (Ismael; Sadeq, 2025).

2.2 Characteristics of Possible Products

In real-world buildings, many of the roofing materials used in roof compositions
exhibit characteristic patterns, often corrugated, which facilitate rainwater runoff and
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result in elevation differences associated with the overlap of their components.
There are also buildings whose roofs consist of waterproofed flat slabs, as well as
roofs that add horizontal technical areas to support the installation of various
equipment, such as antennas, water tanks, exhaust machinery, and cooling
systems. In addition, the presence of other observable structures on roofs, such as
vegetation, chimneys, parapets, or other vertical elements, is common, which may
generate occlusions for remote sensors and hinder the accurate recording of roof
geometry.

For these reasons, interpolating digital surface models (DSM) or structuring
triangular irregular networks (TIN) directly from point clouds, without textures, may
lead to models that are not very convincing to the human eye. Meshes capture
roughness but cannot necessarily be maintained at high resolutions with sufficient
accuracy to interpret finer details in large-scale mapping. Conversely, the
interpolation of regular models smooths surfaces and may interfere with the
localization of discontinuities (Guo et al., 2024).

Assuming the simplification of geometries into planes is a strategy to reduce
computational resource consumption for data storage, transmission, and
visualization. This also avoids overfitting the produced models, preserving only the
most stable and relevant structures for volumetric description of buildings. Planar
faces create an abstraction of the real surface, which is usually not planar, but can
be approximated by one or more planar segments. Thus, there is a trade-off in
finding a compact representation of surfaces within a tolerable error margin. Unlike
TINs, only the vertices selected to form the boundary polygon of each fitted planar
segment are stored. Similarly to DSMs, interpolation may occur to record vertex
elevations without imposing any requirement for regularization in the sampling of
stored planimetric coordinates. This also implies that only the extreme vertices of
each line segment at the plane boundaries are needed. According to Verma, Kumar,
and Hsu (2006), for planes to form consistent structures in final models, it is
necessary to know whether spatial relationships between planes are respected,
whether the semantics and number of mapped planes are correct, whether planes
are well positioned, and whether their shape and orientation meet expectations.

The very characterization of which planes should be recorded depends on the
expected level of detail for the model. The concept of levels of detail, following the
nomenclature defined in the CityGML 2.0 standard (Groger; Plimer, 2012), foresees
an increasing scale of fidelity for 3D building models. From the lowest to the highest,
they can be described as follows: LoD 0 is satisfied by the planimetric restitution of
building outlines (also called footprints); LoD 1 requires the addition of altimetric
information and allows the creation of block models; LoD 2 introduces geometric
detailing of building roofs and semantically differentiated surfaces; and LoD 3 adds
architectural information on fagades, making terrestrial surveying desirable to
complement aerial surveys. Beyond these levels, illustrated in Figure 3, the highest
level (LoD 4) has been proposed, with interior detailing, which may require the
adoption of more invasive techniques than those conventionally used for Earth
Observation services. However, this level is considered feasible for the formal city, if
municipal building cadastre documents are taken into account, and for modern
developments where the national strategy for disseminating Building Information
Modelling (BIM) is implemented (Brasil, 2024).
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Figure 3: The first four levels of the CityGML 2.0 standard for building detail.
Source: Adapted from (Biljecki; Ledoux; Stoter, 2016)

Therefore, processing a 3D vector cadastre to model buildings represents a
refinement of high-volume data with low structural complexity. It focuses on
preserving, structuring, and highlighting the boundary vertices of sets of planes that
allow the abstraction of building shapes. The development of a LoD 2 model, for
example, may be accompanied by the extraction of roof features useful for
applications such as solar incidence studies, including roof type, slope, and
orientation. Likewise, intermediate-level detail cadastres can be updated by
leveraging the latent potential of the pre-existing datasets that enabled them. For
this purpose, it is necessary to segment instances of different roof facets or slopes
when these are not flat roofs (already satisfied by the previous model), as well as to
indicate the presence of superstructures, enhancing the usability of the models for
studies on photovoltaic panel deployment (Krapf et al., 2022a).

3 Municipal spatial datasets

The municipality of Rio de Janeiro periodically updates its cartographic base through
aerial photogrammetric coverage. From 2019 onward, mosaics® of this nature have
been published as true orthophotos, with parallax correction for the terrain and
surface objects such as buildings and vegetation. The generation of these products
usually relies on aerial photographs co-registered with data from LiDAR sensors
onboard the same flight. Optionally, for isolated flights, post-processing can be
performed to register images and point clouds. The resulting mosaics, stored in TIF
format, present a spatial resolution (GSD - Ground Sample Distance) of
approximately 15 cm/pixel and a radiometric resolution of 8 bits per band, and are
intended for cadastral applications (Paiva; Badolato; Coelho, 2024). For the year
2019, this data volume reaches nearly 1 TB, of which 65% corresponds to point
clouds stored in LAS format. The point cloud density was designed for 8 points/m?
(Topocart Aerolevantamentos, 2019).

Access to municipal data is provided through the open data portal of the City of Rio
de Janeiro, available at www.data.rio. Ordinance No. 53%, of December 3, 2010,
regulates the free provision of geospatial data to universities, linked to projects of
public interest, with or without counterparts. According to the ordinance, the granting
of use for products that are available on the official portals of the Municipal Institute
of Urbanism Pereira Passos (IPP) is already authorized. For other products, such as
the vector building database and the point clouds used in this study, a data-sharing
agreement must be executed between the institutions.

The municipal building cadastre updated based on the dataset surveyed in 2019
comprises just over 1.5 million buildings. Non-geometric attributes (such as
single-family or multifamily residential use, commercial or mixed use) fall outside the
scope of this study and, to ensure compliance with the General Data Protection Law
(LGPD) (Brasil, 2018), anonymized records cannot be linked to other tables. These
records include geometries of multiple planar projections to describe different
heights of the same observed building. Base and top elevations are assigned to
these geometries, which are useful for block extrusion in a model compatible with

3 Available at https://siurb.rio/portal/home/search.html?searchTerm=trueortofotos\#content
4 Available at https://www.data.rio/documents/c34400f6e0d641ac811019220a6fffa2
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LoD 1. There is also a field describing typology, in order to organize projections and
distinguish functional buildings from constructions under development or ruins.
Finally, a building identifier allows the dissolution of projections into a single footprint
polygon. Figure 4 illustrates building density (represented by their footprints) on a
grid with rectangular cells of up to 550 meters, corresponding to approximately 0.3
km2.
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Figure 4: Density of buildings in the 2019 municipal cadastre.
Source: Authors (2025)

It should be noted that, due to informality, buildings in favelas pose constant
challenges for maintaining the cadastre. High construction density, irregular
occupied terrain, and spontaneous growth of built units, often vertically overlapping
or interconnected, raise issues regarding how to individualize constructions.
Furthermore, the absence of official documentation makes it complex for human
operators unfamiliar with the community being mapped to assign any identifiers for
individualization in administrative records. Thus, in cases where dissolving through
building identifiers becomes unfeasible, a spatial separation heuristic is required to
isolate any projections that do not share a common area greater than 1 m2
Tolerating small overlapping areas is necessary to prevent minor feature restitution
errors in the cadastre from producing footprints of large agglomerations of buildings.

4 Methodology Employed

The updated three-dimensional models of the built environment of the Netherlands
were developed within the scope of the 3D Geoinformation research group, which is
part of the Urban Data Science Section at Delft University of Technology (TU Delft).
These models combine data from the official cadastral database (BAG -
Basisregistraties Adressen en Gebouwen) with nationally available point clouds
(AHN — Actueel Hoogtebestand Nederland) to generate building vectors in LoD 1
and LoD 2. Within the ecosystem of applications developed for this purpose, the
main program used for model construction is called roofer®. It was employed to
integrate elevation data from different AHN versions (2, 3, and 4), resulting in
distinct models. These models, integrated with pre-existing building records derived
from the BAG, serve as the basis for cadastral updates at the national scale.

The automated roofer process is based on the detection of planar primitives over the
point cloud using a region-growing algorithm, and on the derivation of linear
primitives along external boundaries (boundary lines) and intersections (intersection
lines) using the alpha-shape algorithm. Linear primitives are grouped by orientation

5 Free software, which may be downloaded from https://github.com/3DBAG/roofer.
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and distance and regularized to form unique contour representations. These
contours are used to partition the 2D footprint polygon, and the partitions are
optimized using a graph-cut algorithm. The goal of this step is to minimize an energy
function in order to achieve a balance between smoothness and deviation of the
resulting planar faces relative to the point cloud reference. Finally, an extrusion is
proposed (Figure 5) for the resulting planar faces, and the buildings are stored in
CityJSON format, which is significantly more compact and based on the CityGML
standard.

intersection lines

:. : boundary
¢ lines

®

o’

Figure 5: Main processing stages of the reconstruction implemented in roofer: 1)
data input; 2) planar primitive detection; 3) linear primitive detection; 4) 2D projected
partitioning; 5) optimized partitioning; and 6) vector output after extrusion.
Source: (Peters et al., 2022)
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Initializing the automated process requires that the point clouds contain, at a
minimum, a classification of observed points indicating built areas (building points)
and ground (terrain points). In this case, the pre-existing classification of the
municipal dataset provided in LAS file format was adopted (Graham, 2012). Points
from both classes within a buffer zone surrounding each building footprint are
considered to estimate the base elevation for extrusion. Planar faces with fewer than
16 points are discarded, which imposes a minimum area of approximately 2 m? for
individually identifiable building segments when considering the spatial resolution of
the data available for the city of Rio de Janeiro. This approach is strongly
data-driven; therefore, the quality of the results depends directly on the quality of the
input data.

The computational effort of this process grows almost linearly as the number of
processed buildings increases. The developers recommend dividing datasets into
blocks of spatially proximate buildings, subdividing blocks containing more than
3,500 footprint polygons.

For the city of Rio de Janeiro, block definition for processing took into account the
centroid of each pre-processed footprint polygon (after dissolving projections from
the cadastral database) and the map sheet indexing used in the municipality’s
systematic mapping at a 1:1,000 scale. Seeking to process the entire available
building dataset, excluding areas without constructions, approximately 3,400 blocks
were identified, with an average of 468 buildings per block. The average processing
time observed per block was under 30 seconds (= buildings per second). However,
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variations in building density, as shown in Figure 4, resulted in different processing
windows. Thus, although the typical processing time per block did not exceed one
minute, in 13% of the blocks, where building density was very high, processing
extended beyond one minute.

The total processing time under this configuration was close to 30 hours on
high-performance hardware with high main memory availability. The equipment
dedicated to this study featured 128 GB of RAM and an Intel i9-12900 processor
with 8 E-cores and 8 P-cores, capable of operating at frequencies ranging from 1.8
to 3.8 GHz and 2.4 to 5.1 GHz, respectively. This configuration supports up to 24
parallel threads. Each thread is responsible for reconstructing one building at a time.

The execution call for processing each block was automated through a custom
routine developed for the municipal dataset. This routine was responsible for
locating the pre-processed footprint files for different blocks and invoking roofer via
the operating system command line, supplying as arguments the directory where the
point clouds were stored and a destination path for result persistence. The same
routine also recorded execution times per processed building block.

In its version 1.0 (beta 5), dated 27/08/2025, roofer executes in parallel on modern
processors but does not include GPU acceleration capabilities. Once running, a
main controller orchestrates the activities of each subprocess for reading and
clipping point cloud data for individual buildings, which then proceed to the main
processing stages described in Figure 5. The controller also aggregates subprocess
outputs to ensure data persistence as a sequence of entries composing the final
CityJSON file®. Occasional processing failures for individual buildings may lead to
different outcomes, ranging from the absence of the LoD 2 object in the final result,
when no identifiable planes are detected, to the interruption of processing for an
entire block if basic assumptions regarding the provided data are not met.

In order to prevent the loss of processed blocks, a routine was developed to verify
the individual quality of the provided footprint polygons. This routine preemptively
extracts from the blocks any records that do not comply with a set of formation rules
and feeds a backlog registry, identifying cadastral entities requiring manual review.
In total, 1,250 buildings distributed throughout the municipality, 0.08% of the total,
are included in this registry.

Visualization of the resulting models can be performed using different tools, such as
QGIS with an appropriate plugin’, or viewers optimized for web browser
presentation®. The model outputs preserve identifiers that can be used to update
pre-existing databases. However, the workflow for delivering updated research
results still requires interfacing with stakeholders from the City of Rio de Janeiro.
While LoD 2 data consumption is considered well established, further improvements
are expected in the automated quality assessment of the generated models.
Likewise, it is recommended that a formal update process be established to address
municipal-specific requirements.

5 Discussion of Results

In total, after summing the features submitted to the software in the pre-processed
blocks and excluding backlog features, 1,593,006 footprint polygons were
processed. The number of successfully reconstructed buildings totals 1,428,248
features (89.6% of the input dataset). The resulting features are multipart; that is,
each feature in the final output may contain one or more parts corresponding to
different planar faces of the roofs. Fagcades were disregarded in the LoD 2 results
analysis.

% The final composition requires command line apps available at https://github.com/cityjson/cjseq and
https://github.com/cityjson/cjio

7 Available at https://plugins.qgis.org/plugins/CityJSON-loader

8 For example, the viewer available at https://ninja.cityjson.org
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Table 1: Distribution of buildings according to the number of roof facets

Number of roof facets Total buildings Percentage (%)
Undefined 164758 10.34
1 411829 25.85
2 364061 22.85
3-5 478453 30.03
6+ 173905 10.92

Source: Authors (2025)

Table 1 summarizes the total and percentage results according to the number of roof
facets (roof faces) observed in the processed buildings. Buildings classified as
“Undefined” correspond to those that could not be reconstructed in LoD 2. For such
cases, the pre-existing LoD 1 features from the municipal cadastral database can
still be retained to support applications. Common reasons for undefined cases
include footprints with individual faces of very small areas, occluded regions, or
classification errors in the point cloud.

Table 2: Predominant roof form classification

Roof classification Total Percentage RMS
buildings (%)
Mean Standard deviation

Simple horizontal 286317 17.97 0.207 0.351

Multilevel 255887 16.06 0.276 0.401

horizontal

Sloped 885461 55.58 0.235 0.351
Unknown 165341 10.38 - -

Source: Authors (2025)

The resulting features are categorized according to the predominant slope class of
the segmented roof surfaces, as shown in Table 2. This taxonomy distinguishes
buildings with simple horizontal roofs, those with multiple horizontal levels, and
those predominantly composed of sloped faces. The “Unknown” class groups
buildings that could not be represented in LoD 2 or could not be adequately
classified. LoD 2 features focus on roof detailing and, as typically occurs with the
routines implemented in roofer, facades result from extrusion. From a top-down
perspective, it is difficult to determine fagade setbacks or internal voids caused by
cantilevered structures. Therefore, the conventional approach is to close prisms by
adding vertical planes from roof edges down to an average ground level, omitting
information about the presence of eaves.

Roof shapes can also be described based on the adjacency relationships among
their faces or facets. The simplest roof types, illustrated in Figure 6 both in
perspective and plan view, include single-facet roofs (flat or shed), two-facet roofs
(gable or decoupled), and roofs with three or more facets (half-hip, hip, pyramid,
mansard, or complex).
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Figure 6: Roof types in perspective and plan projection: 1) flat; 2) shed; 3) gable; 4)
decoupled; 5) half-hip; 6) hip; 7) pyramid; 8) mansard; and 9) complex.

Source: Adapted from (Mohajeri et al., 2018)

6

Figure 7: Model visualization for a block near the Mangueira neighborhood: 1)
Regional photograph from 2025; 2) Orthorectified mosaic from 2019; 3) LiDAR point
cloud; 4) 3D building model visualization in QGIS; 5) LoD 2 vectorization; and 6)
Footprints used as input for building individualization.

Source: Authors (2025)
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From the exploratory analysis, as illustrated in Figure 7, it is possible to observe that
the model correctly identifies roof types, particularly for buildings with regular
geometries. The adopted approach favors the handling of complex roofs, even when
curved surfaces are approximated by multiple planar segments. However, the
number of points required to define individual planes means that the total area of
identifiable faces across the various roof levels is directly proportional to the quality
of representation achievable in the resulting LoD 2 model. This is justified by the
observation that small curved surfaces tend to be represented with low fidelity,
whereas large free-form surfaces favor successful modeling.

For quality assessment, a human expert was asked to label 2D features on the 2019
mosaics. Information regarding the point clouds, their classification, and the
processing results was omitted at this stage to avoid bias in the resulting ground
truth. However, since the geometric correction of the mosaics is associated with the
LiDAR point cloud used in the LoD 2 processing, the planimetric coordinates of
features labeled on the mosaics are co-registered to the same reference system.
Thus, using mosaics as vectorization bases, roof segment validation can be
performed directly in 2D. Figure 8 shows the overlap between manually labeled
region boundaries (pink dashed lines) and regions segmented by the automated
process (blue) over the 2019 mosaic.

Figure 8: Verification of roof segment overlap within the same reference frame.
Source: Authors (2025)

In total, 225 buildings were surveyed: 116 with roofs of up to five facets and 109 with
complex roofs, distributed across five distinct regions of the municipality. Planar
faces were counted as “Hits” when cross-correlation was observed, that is,
whenever a segment from the resulting set could be associated with a single
segment from the reference set. The green areas in Figure 9 exemplify segments
with cross-correlation. “Errors” were counted for incorrectly segmented faces in
cases of under-segmentation or over-segmentation. The red areas in items 1 and 2
of Figure 9 illustrate such cases. “Omissions” correspond to the sum of faces
without correspondence, occurring when portions of buildings were not represented
in the automatically segmented regions or during manual labeling (illustrated by the
yellow areas in Figure 9).

A== e

e SR

Figure 9: Examples of errors and omissions observed during segment correlation: 1)
Errors due to under-segmentation; 2) Error due to over-segmentation; and 3)

Omissions.
Source: Authors (2025)

Table 3 summarizes the qualitative evaluation of the process in individualizing roof
segments. Deviations in the planar boundaries of projected segments were not
quantified in this study; however, the resulting dataset includes residual metrics (root
mean square error, RMS, presented in Table 2) between the modeled roof faces and
the input point clouds.
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Table 3: Verification of the quality of individualizing isolated roof segments

Roofs with up to 5 segments Complex roofs
Successes 266 847
Errors 39 285
Omissions 74 75
All facets 379 1207

Source: Authors (2025)

Figure 10 presents a comparison between manual and automated roof
segmentation. Mosaic excerpts and point cloud classification support the
interpretation of observable differences between vector sets. Brown was used for
ground, red for buildings, and green for tree vegetation. Points from the latter
category are not used during processing but can assist in result interpretation. For
buildings not manually labeled, the corresponding automatically generated features
were omitted. Conversely, manually labeled features that could not be produced by
the automated method are highlighted in the comparison.

The most frequent modeling errors arise from points in the point clouds that were
incorrectly classified, either as tree canopy or as structures present on rooftops. Low
point density or occlusions generate gaps and may cause deviations along
reconstructed planar edges. This supports the understanding that efforts to create
new multimodal processes could better leverage the available information for the
city of Rio de Janeiro. Additionally, auxiliary inputs, such as estimated base
elevation derived from pre-existing cadastral records, could be incorporated to
prevent gross errors when the buffer area for collecting ground points is insufficient
in densely built-up areas.

Thus, although the potential of pre-existing survey datasets has been demonstrated,
gaps remain to be addressed in future studies. Further work may consider revising
prior point cloud classification using semantic image information as a reference.
Additional research directions include simultaneously updating the planimetric base,
either during preprocessing or in parallel, so that more recent point clouds can be
processed at lower cost. Finally, gaps observed in the results could be addressed by
jointly modeling uncertainties, enabling the prioritization of features most relevant for
human review.
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Figure 10: Comparison between manual and automated roof segmentation.
Source: Authors (2025)

6 Final remarks

The proposed processing of the Rio de Janeiro municipal dataset using 2019 data to
generate LoD 2 features proved to be feasible. Contributions of this work include
large-scale data selection, compatibility adjustments to enable processing, and
quality evaluation with identification of limiting factors, in addition to its novelty given
that the applied algorithmic framework has been primarily tested in contexts distinct
from those of cities in the Global South.
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As conceived, the workflow does not address updates to built-up planar area or the
detection of new buildings. However, nothing prevents its extension with a
preliminary stage for such purposes. Similarly, the Rio de Janeiro municipal
cadastre includes base and top elevation attributes linked to building footprints,
which could be incorporated as inputs in densely built-up regions.

It is therefore concluded that the potential for leveraging pre-existing survey data
has been demonstrated. Nonetheless, complementary investigations into point cloud
classification methods are recommended, either to refine input data or to explore
updates to the processing approach for multimodal inputs.
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