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Abstract 
To demonstrate applicable improvements to the urban cadastre of the city of Rio de Janeiro, 
state-of-the-art techniques for 3D building modeling were investigated, focusing on the 
geometric detailing of roofs. The experiments subjected data from a previous cadastre to 
automated processing, using open-source software, to increase the level of detail of 
pre-existing features, optimizing resources, in a pioneering initiative for large cities in the 
Global South. The results are useful for various environmental studies, by incorporating new 
characteristics into urban records, and highlight human intervention as an essential element 
for ensuring quality. 

Keywords:​ 3D building model, level of detail, CityGML 
 

Resumo 
Para demonstrar melhorias aplicáveis ao cadastro urbano da cidade do Rio de Janeiro, 
foram investigadas técnicas do estado da arte para modelagem 3D de edificações, com 
foco no detalhamento geométrico das coberturas. Os experimentos submeteram dados de 
um cadastro anterior a processamento automatizado, com software livre, para aumento do 
nível de detalhamento de feições pré-existentes, otimizando recursos, em uma iniciativa 
pioneira para grandes cidades do Sul Global. Os resultados são úteis a diversos estudos 
ambientais, ao incorporar novas características aos registros urbanos, e valorizam a 
atuação humana como elemento essencial para a garantia da qualidade. 

Palavras-chave:​ modelo de edificações 3D, nível de detalhamento, CityGML 
 

Resumen 
Para demostrar mejoras aplicables al catastro urbano de la ciudad de Río de Janeiro, se 
investigaron técnicas de vanguardia para el modelado 3D de edificios, centrándose en el 
detalle geométrico de las cubiertas. Los experimentos sometieron datos de un catastro 
previo a procesamiento automatizado mediante software de código abierto para aumentar el 
nivel de detalle de los elementos preexistentes y optimizar recursos, en una iniciativa 
pionera para las grandes ciudades del Sur Global. Los resultados son útiles para diversos 
estudios ambientales, al incorporar nuevas características a los registros urbanos y 
destacar la intervención humana como un elemento esencial para garantizar la calidad. 

Palabras clave:​ modelo de edificio 3D, nivel de detalle, CityGML 



1​ Introduction 
The form of buildings can vary significantly among urban settings, which may be 
associated with factors such as the level of local development, topography, climate, 
culture, and the age of buildings. Urban asset management requires feature-rich, 
up-to-date, and accurate models, within margins compatible with the problem under 
study. In addition to the planimetric built area, these models must consider the 
altimetric variations of urban objects. Although the development and maintenance of 
three-dimensional city models represent challenges that have been partially 
addressed, recent efforts in computer-vision-based photogrammetry provide 
evidence of scientific interest in improving the results offered (Lussange et al., 
2025). 
Remote sensing techniques provide relevant sources for the generation of 3D 
models, although cadastral surveys also contribute to their enrichment. Images and 
point clouds obtained by sensors onboard aerial or orbital platforms preserve 
records (raw or minimally processed) of real built forms. However, their analysis 
requires intensive computational processing. Developing applications based on 
these datasets requires the individualization of objects of interest, such as buildings, 
and the abstraction of features. The greater the level of preserved features, the 
greater the human and computational efforts tend to be. 
By representing the built environment and other urban elements with reasonable 
accuracy, three-dimensional city models attract the interest of public managers, 
private companies, and civil society. According to Biljecki et al. (2015), the growing 
interest in these models stems from their wide range of applications, such as 
cadastre, virtual visits, change detection, urban planning, mobility analysis, 
emergency response, environmental studies, and quality-of-life assessment. In 
environmental studies, buildings or parts of them, such as roofs and façades, form 
physical barriers in various phenomena. Their surfaces are far less permeable than 
tree vegetation and more complex than terrain and other elements of urban 
infrastructure. This motivates the discussion on the levels of detail required and 
feasible for their representation in the dynamics of phenomena applied to different 
environmental studies. 
With regard to solar exposure and the formation of shaded areas, for example, 
buildings interact by reducing the incidence of direct solar radiation and contributing 
to diffuse and/or specular propagation (depending on the surface), requiring 
computation through algorithms such as ray tracing (Robinson; Stone, 2004). This 
use of building models can enable the production of radiation maps for estimating 
shading over time, with direct applications in energy efficiency, the identification of 
urban heat islands, and thermal comfort estimation. This allows the analysis of 
microclimatic impacts due to the addition of new buildings or the simulation of 
vertical growth within the pre-existing urban volume (Falcão et al., 2025). In addition, 
building roof models can also be enriched through the mapping of superstructures 
such as chimneys, tree canopies, skylights, or machinery, improving estimates of 
solar potential (Krapf et al., 2022b). 
Similarly, these algorithms can be used in studies on noise propagation and noise 
pollution, which requires the estimation of reflection and absorption indices of 
mechanical waves for different classes of objects on the terrain (Stoter et al., 2020). 
In telecommunications projects, this can be adapted to verify the coverage or 
occlusion of electromagnetic waves, when planning device configurations and 
assessing interference related to signal shadows and the impacts of new 
constructions, supporting the optimization and operation of urban networks (Seilov 
et al., 2021). 
In the contexts of urban ventilation and pollutant dispersion, buildings directly 
influence velocity fields, turbulence, and atmospheric flow dispersion. These effects 
are usually investigated through computational fluid dynamics and, in more detailed 
applications, through large eddy simulation (Buccolieri; Hang, 2019), which allow a 

2/19 



more faithful representation of the interaction between urban morphology and 
transport processes. 
In turn, flood dynamics are traditionally based on terrain elevation models and 
estimates of land use, permeability, and retention capacities. The explicit 
incorporation of building geometry makes it possible to define patterns of capture, 
storage, and routing of surface runoff more accurately. Recognizing these patterns 
contributes to flood risk analysis and the development of strategies for sustainable 
urban drainage (Wang, C. et al., 2019). This also allows refinements in the 
assessment of the contribution of green roofs, detention reservoirs, and rainwater 
harvesting systems to urban resilience (Angrill et al., 2017). 
Defining levels of detail for city models helps formalize needs and capacities for 
abstracting the urban environment when surveying the requirements of each 
application. Global map services, for example, benefit from the availability of 
building projections offered in models with lower levels of detail, due to the more 
compact volumetry of these representations. In addition, these services benefit from 
the wide availability of algorithms capable of automating feature capture at this level 
of detail, even in regions mapped using different Earth Observation techniques. In 
turn, block models, which comprise an intermediate level of detail, may be more 
suitable for strategic planning analyses and rapid visualization. Finally, building 
models at higher levels, with detailed geometries and semantic distinction of 
observed surfaces (roofs and façades), serve engineering applications, 
environmental simulations, and other spatial data queries that require high fidelity to 
the real world. 
The relevance of efforts to provide official models at different levels of detail is 
evident in the limitations of traditional urban cadastres in adequately representing 
building geometry and semantics (Biljecki et al., 2015). This deficiency hinders the 
adoption of three-dimensional urban models at more advanced levels of detail. To 
the best of our knowledge, when available, high-level-of-detail vector models are 
mostly concentrated in cities of the Global North (Wysocki et al., 2024). In 
metropolitan cities such as Rio de Janeiro, it is of interest to assess the applicability 
of techniques successfully employed with large volumes of data in other regions. 
Taking as a reference the dataset accumulated over years to update urban cadastral 
bases and the systems published by the municipal administration, it can be 
concluded that the building model is compatible with an intermediate level of detail. 
Thus, the vector building records of the current municipal cadastre can be delivered 
at a block level of detail, more specifically at Level of Detail 1 (LoD 1) of the 
CityGML standard (Gröger; Plümer, 2012). This standard, maintained by the Open 
Geospatial Consortium (OGC), defines levels of detail and a conceptual model for 
the representation, storage, and exchange of urban data.  
An example of the application of the LoD 1 model, demonstrated in the Reviver 
Centro1 project of the Municipal Secretariat for Urban Development and Licensing, 
makes it possible to visualize properties under monitoring in the city. The main 
resource used by the viewer is the municipal vector building database of the City of 
Rio de Janeiro, which contains planimetric and altimetric information on building 
footprints. Although useful for rapid visualizations, the block model is not 
recommended for applications sensitive to roof shapes. Asymmetric constructions, 
as illustrated in Figure 1, or complex ones may be difficult to represent under this 
type of modeling.  
In this study, the main objective was to propose an approach for cadastral updating 
aimed at incorporating new attributes into urban records, enabling compatibility of 
the building model at Level of Detail 2 (LoD 2). This level assumes the explicit 
representation of roof geometries and their semantic separation from façades and 
other construction elements. To assess the feasibility of the proposal, municipal data 
were processed using open-source software originally developed to enable such 

1 Reviver Centro’s web portal is available at https://reviver-centro-pcrj.hub.arcgis.com. 
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models in the Netherlands2 (Peters et al., 2022). 
 

 
Figure 1: Three different possibilities for block modeling of a building (saltbox) 

Source: (Stoter et al., 2020) 
 

The remaining sections of this article are organized as follows: Section 2 addresses 
related work on the same topic, emphasizing the theoretical context; Section 3 
characterizes the municipal datasets and justifies the choices of spatial subsets; 
Section 4 presents the methodology employed to apply the algorithms to the new 
dataset; Section 5 presents and discusses the results obtained; and Section 6 
provides the final considerations of this study. 

2​ Related work 
The literature on the production of 3D building models presents different approaches 
that may result in different levels of detail. Starting with the data sources addressed, 
these may be derived either from aerial or orbital surveys or from terrestrial surveys. 
Optionally, pre-existing data from formal building cadastres may be incorporated, 
such as architectural plans, multipurpose cadastres, real estate records, and official 
cartographic databases that describe the geometry, use, and occupation of 
buildings. These approaches may also differ according to their methodological 
bases, which may focus either on data or on models, and it is also possible to find 
hybrid approaches or ones that are difficult to categorize according to this 
data–model dichotomy. 

2.1 Characterization of data sources and processing approaches  
According to Wang, R. (2013), high-resolution image datasets can be rich in 
semantic information but depend on specific methods to retrieve three-dimensional 
geometry. On the other hand, point clouds obtained from LiDAR (Light Detection 
and Ranging) sensors directly represent geometry, but typically achieve lower 
resolutions and limited semantics. Thus, to perform 3D modeling from images, 
machine learning techniques may be used to estimate elevations monocularly, or 
techniques for measuring three-dimensional coordinates in stereoscopic pairs may 
be employed, using photogrammetric principles that generally allow a better 
understanding of the accuracy associated with the derived elevations. 
Nevertheless, it is possible to integrate images and point clouds through registration 
processes that establish correspondences between coordinates projected onto the 
image plane and coordinates in the geometric space of the real world, as preserved 
in point clouds. This integration characterizes a multimodal data fusion approach, in 
which complementary information from different sensors is consistently combined. In 
general, such processes can be used both to virtually increase the spatial resolution 
of point clouds and to perform image-driven segmentation, simultaneously exploiting 
geometric and semantic features stored in the datasets. 
In approaches that operate directly on point clouds, central steps include data 
classification and filtering in order to separate buildings from other objects present in 
the urban environment. As highlighted by Wang, R., Peethambaran, and Chen 
(2018), this type of approach depends on the quality and resolution of the input data. 

2 Information about the 3DBAG models is available at https://3d.bk.tudelft.nl/projects/3dbag 
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In general, the process involves the segmentation of coherent surfaces or their 
edges — for example, using planar or linear primitives — followed by the 
establishment of topological relationships among the identified objects. 
In contrast, model-driven approaches focus on the selection and fitting of 
parameterizable geometric structures to represent buildings as topologically 
consistent objects. In the case of roof models, these structures may include 
pyramids, sets of one or more planes, and, to account for specific construction 
styles, geometries such as cones, cylinders, or spheroids. However, this strategy 
tends to be limited by the number of predefined shapes and the possible 
combinations among them. 
Despite the dichotomy between the approaches presented in the literature, data and 
models are intrinsically related in the observed processes. The diagram in Figure 2 
provides an overview of inputs and outputs and their relationships in the studied 
processes. It can be said that data are structured to formalize models. Therefore, 
some processes are difficult to categorize or should be treated as hybrid 
approaches. They may lead to balanced strategies between accuracy and the ability 
to model a wide variety of buildings, considering adaptations that help overcome the 
discussed limitations. 
 

 
Figure 2: General overview of inputs and outputs of 3D building modeling processes 

using Earth Observation data and the objects addressed in different approaches. 
Source: Authors (2025) 

 
Assuming a data-driven approach, the segmentation of geometric primitives can be 
performed both on point clouds and on images. Hao, Zhang, and Cao (2016), for 
example, propose a technique for stereoscopic pairs of aerial images that uses a 
feature-matching method (points and lines) between multi-angle aerial images of the 
same scene. Using classical photogrammetric models and matching rules, lines are 
grouped and their heights are extracted by spatial intersection. Another proposal by 
Mohammadi, Samadzadegan, and Reinartz (2019) targets high-resolution satellite 
images and derives a disparity map using Hirschmüller’s (2011) semi-global 
matching. In this case, segmentation is performed using a graph-cut kernel in 
feature space, which includes radiometric bands, the disparity map, and a visible 
vegetation index. 
Recently, the adoption of deep neural networks has stood out in segmentation 
approaches that precede the reconstruction of urban building roofs. This may 
involve, for example, isolating buildings in point clouds using clustering techniques 
and segmenting individual buildings with a RANSAC-based algorithm (RANdom 
SAmple Consensus) (Sun et al., 2024). In satellite imagery, a similar two-step 
approach has been proposed: first, buildings are segmented, and then predefined 
geometric structures are fitted onto digital surface models derived from the image 
set (Ismael; Sadeq, 2025).  

2.2 Characteristics of Possible Products  
In real-world buildings, many of the roofing materials used in roof compositions 
exhibit characteristic patterns, often corrugated, which facilitate rainwater runoff and 
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result in elevation differences associated with the overlap of their components. 
There are also buildings whose roofs consist of waterproofed flat slabs, as well as 
roofs that add horizontal technical areas to support the installation of various 
equipment, such as antennas, water tanks, exhaust machinery, and cooling 
systems. In addition, the presence of other observable structures on roofs, such as 
vegetation, chimneys, parapets, or other vertical elements, is common, which may 
generate occlusions for remote sensors and hinder the accurate recording of roof 
geometry. 
For these reasons, interpolating digital surface models (DSM) or structuring 
triangular irregular networks (TIN) directly from point clouds, without textures, may 
lead to models that are not very convincing to the human eye. Meshes capture 
roughness but cannot necessarily be maintained at high resolutions with sufficient 
accuracy to interpret finer details in large-scale mapping. Conversely, the 
interpolation of regular models smooths surfaces and may interfere with the 
localization of discontinuities (Guo et al., 2024). 
Assuming the simplification of geometries into planes is a strategy to reduce 
computational resource consumption for data storage, transmission, and 
visualization. This also avoids overfitting the produced models, preserving only the 
most stable and relevant structures for volumetric description of buildings. Planar 
faces create an abstraction of the real surface, which is usually not planar, but can 
be approximated by one or more planar segments. Thus, there is a trade-off in 
finding a compact representation of surfaces within a tolerable error margin. Unlike 
TINs, only the vertices selected to form the boundary polygon of each fitted planar 
segment are stored. Similarly to DSMs, interpolation may occur to record vertex 
elevations without imposing any requirement for regularization in the sampling of 
stored planimetric coordinates. This also implies that only the extreme vertices of 
each line segment at the plane boundaries are needed. According to Verma, Kumar, 
and Hsu (2006), for planes to form consistent structures in final models, it is 
necessary to know whether spatial relationships between planes are respected, 
whether the semantics and number of mapped planes are correct, whether planes 
are well positioned, and whether their shape and orientation meet expectations. 
The very characterization of which planes should be recorded depends on the 
expected level of detail for the model. The concept of levels of detail, following the 
nomenclature defined in the CityGML 2.0 standard (Gröger; Plümer, 2012), foresees 
an increasing scale of fidelity for 3D building models. From the lowest to the highest, 
they can be described as follows: LoD 0 is satisfied by the planimetric restitution of 
building outlines (also called footprints); LoD 1 requires the addition of altimetric 
information and allows the creation of block models; LoD 2 introduces geometric 
detailing of building roofs and semantically differentiated surfaces; and LoD 3 adds 
architectural information on façades, making terrestrial surveying desirable to 
complement aerial surveys. Beyond these levels, illustrated in Figure 3, the highest 
level (LoD 4) has been proposed, with interior detailing, which may require the 
adoption of more invasive techniques than those conventionally used for Earth 
Observation services. However, this level is considered feasible for the formal city, if 
municipal building cadastre documents are taken into account, and for modern 
developments where the national strategy for disseminating Building Information 
Modelling (BIM) is implemented (Brasil, 2024). 
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Figure 3: The first four levels of the CityGML 2.0 standard for building detail. 

Source: Adapted from (Biljecki; Ledoux; Stoter, 2016) 
 
Therefore, processing a 3D vector cadastre to model buildings represents a 
refinement of high-volume data with low structural complexity. It focuses on 
preserving, structuring, and highlighting the boundary vertices of sets of planes that 
allow the abstraction of building shapes. The development of a LoD 2 model, for 
example, may be accompanied by the extraction of roof features useful for 
applications such as solar incidence studies, including roof type, slope, and 
orientation. Likewise, intermediate-level detail cadastres can be updated by 
leveraging the latent potential of the pre-existing datasets that enabled them. For 
this purpose, it is necessary to segment instances of different roof facets or slopes 
when these are not flat roofs (already satisfied by the previous model), as well as to 
indicate the presence of superstructures, enhancing the usability of the models for 
studies on photovoltaic panel deployment (Krapf et al., 2022a). 

3​ Municipal spatial datasets 
The municipality of Rio de Janeiro periodically updates its cartographic base through 
aerial photogrammetric coverage. From 2019 onward, mosaics3 of this nature have 
been published as true orthophotos, with parallax correction for the terrain and 
surface objects such as buildings and vegetation. The generation of these products 
usually relies on aerial photographs co-registered with data from LiDAR sensors 
onboard the same flight. Optionally, for isolated flights, post-processing can be 
performed to register images and point clouds. The resulting mosaics, stored in TIF 
format, present a spatial resolution (GSD – Ground Sample Distance) of 
approximately 15 cm/pixel and a radiometric resolution of 8 bits per band, and are 
intended for cadastral applications (Paiva; Badolato; Coelho, 2024). For the year 
2019, this data volume reaches nearly 1 TB, of which 65% corresponds to point 
clouds stored in LAS format. The point cloud density was designed for 8 points/m² 
(Topocart Aerolevantamentos, 2019). 
Access to municipal data is provided through the open data portal of the City of Rio 
de Janeiro, available at www.data.rio. Ordinance No. 534, of December 3, 2010, 
regulates the free provision of geospatial data to universities, linked to projects of 
public interest, with or without counterparts. According to the ordinance, the granting 
of use for products that are available on the official portals of the Municipal Institute 
of Urbanism Pereira Passos (IPP) is already authorized. For other products, such as 
the vector building database and the point clouds used in this study, a data-sharing 
agreement must be executed between the institutions. 
The municipal building cadastre updated based on the dataset surveyed in 2019 
comprises just over 1.5 million buildings. Non-geometric attributes (such as 
single-family or multifamily residential use, commercial or mixed use) fall outside the 
scope of this study and, to ensure compliance with the General Data Protection Law 
(LGPD) (Brasil, 2018), anonymized records cannot be linked to other tables. These 
records include geometries of multiple planar projections to describe different 
heights of the same observed building. Base and top elevations are assigned to 
these geometries, which are useful for block extrusion in a model compatible with 

4 Available at https://www.data.rio/documents/c34400f6e0d641ac811019220a6fffa2 
3 Available at https://siurb.rio/portal/home/search.html?searchTerm=trueortofotos\#content 
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LoD 1. There is also a field describing typology, in order to organize projections and 
distinguish functional buildings from constructions under development or ruins. 
Finally, a building identifier allows the dissolution of projections into a single footprint 
polygon. Figure 4 illustrates building density (represented by their footprints) on a 
grid with rectangular cells of up to 550 meters, corresponding to approximately 0.3 
km². 
 

 
Figure 4: Density of buildings in the 2019 municipal cadastre. 

Source: Authors (2025) 
 
It should be noted that, due to informality, buildings in favelas pose constant 
challenges for maintaining the cadastre. High construction density, irregular 
occupied terrain, and spontaneous growth of built units, often vertically overlapping 
or interconnected, raise issues regarding how to individualize constructions. 
Furthermore, the absence of official documentation makes it complex for human 
operators unfamiliar with the community being mapped to assign any identifiers for 
individualization in administrative records. Thus, in cases where dissolving through 
building identifiers becomes unfeasible, a spatial separation heuristic is required to 
isolate any projections that do not share a common area greater than 1 m². 
Tolerating small overlapping areas is necessary to prevent minor feature restitution 
errors in the cadastre from producing footprints of large agglomerations of buildings. 

4​ Methodology Employed 
The updated three-dimensional models of the built environment of the Netherlands 
were developed within the scope of the 3D Geoinformation research group, which is 
part of the Urban Data Science Section at Delft University of Technology (TU Delft). 
These models combine data from the official cadastral database (BAG – 
Basisregistraties Adressen en Gebouwen) with nationally available point clouds 
(AHN – Actueel Hoogtebestand Nederland) to generate building vectors in LoD 1 
and LoD 2. Within the ecosystem of applications developed for this purpose, the 
main program used for model construction is called roofer5. It was employed to 
integrate elevation data from different AHN versions (2, 3, and 4), resulting in 
distinct models. These models, integrated with pre-existing building records derived 
from the BAG, serve as the basis for cadastral updates at the national scale. 
The automated roofer process is based on the detection of planar primitives over the 
point cloud using a region-growing algorithm, and on the derivation of linear 
primitives along external boundaries (boundary lines) and intersections (intersection 
lines) using the alpha-shape algorithm. Linear primitives are grouped by orientation 

5 Free software, which may be downloaded from https://github.com/3DBAG/roofer. 
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and distance and regularized to form unique contour representations. These 
contours are used to partition the 2D footprint polygon, and the partitions are 
optimized using a graph-cut algorithm. The goal of this step is to minimize an energy 
function in order to achieve a balance between smoothness and deviation of the 
resulting planar faces relative to the point cloud reference. Finally, an extrusion is 
proposed (Figure 5) for the resulting planar faces, and the buildings are stored in 
CityJSON format, which is significantly more compact and based on the CityGML 
standard. 
 

 
Figure 5: Main processing stages of the reconstruction implemented in roofer: 1) 

data input; 2) planar primitive detection; 3) linear primitive detection; 4) 2D projected 
partitioning; 5) optimized partitioning; and 6) vector output after extrusion. 

Source: (Peters et al., 2022) 
 

Initializing the automated process requires that the point clouds contain, at a 
minimum, a classification of observed points indicating built areas (building points) 
and ground (terrain points). In this case, the pre-existing classification of the 
municipal dataset provided in LAS file format was adopted (Graham, 2012). Points 
from both classes within a buffer zone surrounding each building footprint are 
considered to estimate the base elevation for extrusion. Planar faces with fewer than 
16 points are discarded, which imposes a minimum area of approximately 2 m² for 
individually identifiable building segments when considering the spatial resolution of 
the data available for the city of Rio de Janeiro. This approach is strongly 
data-driven; therefore, the quality of the results depends directly on the quality of the 
input data. 
The computational effort of this process grows almost linearly as the number of 
processed buildings increases. The developers recommend dividing datasets into 
blocks of spatially proximate buildings, subdividing blocks containing more than 
3,500 footprint polygons. 
For the city of Rio de Janeiro, block definition for processing took into account the 
centroid of each pre-processed footprint polygon (after dissolving projections from 
the cadastral database) and the map sheet indexing used in the municipality’s 
systematic mapping at a 1:1,000 scale. Seeking to process the entire available 
building dataset, excluding areas without constructions, approximately 3,400 blocks 
were identified, with an average of 468 buildings per block. The average processing 
time observed per block was under 30 seconds (≈ buildings per second). However, 

9/19 



variations in building density, as shown in Figure 4, resulted in different processing 
windows. Thus, although the typical processing time per block did not exceed one 
minute, in 13% of the blocks, where building density was very high, processing 
extended beyond one minute. 
The total processing time under this configuration was close to 30 hours on 
high-performance hardware with high main memory availability. The equipment 
dedicated to this study featured 128 GB of RAM and an Intel i9-12900 processor 
with 8 E-cores and 8 P-cores, capable of operating at frequencies ranging from 1.8 
to 3.8 GHz and 2.4 to 5.1 GHz, respectively. This configuration supports up to 24 
parallel threads. Each thread is responsible for reconstructing one building at a time. 
The execution call for processing each block was automated through a custom 
routine developed for the municipal dataset. This routine was responsible for 
locating the pre-processed footprint files for different blocks and invoking roofer via 
the operating system command line, supplying as arguments the directory where the 
point clouds were stored and a destination path for result persistence. The same 
routine also recorded execution times per processed building block. 
In its version 1.0 (beta 5), dated 27/08/2025, roofer executes in parallel on modern 
processors but does not include GPU acceleration capabilities. Once running, a 
main controller orchestrates the activities of each subprocess for reading and 
clipping point cloud data for individual buildings, which then proceed to the main 
processing stages described in Figure 5. The controller also aggregates subprocess 
outputs to ensure data persistence as a sequence of entries composing the final 
CityJSON file6. Occasional processing failures for individual buildings may lead to 
different outcomes, ranging from the absence of the LoD 2 object in the final result, 
when no identifiable planes are detected, to the interruption of processing for an 
entire block if basic assumptions regarding the provided data are not met. 
In order to prevent the loss of processed blocks, a routine was developed to verify 
the individual quality of the provided footprint polygons. This routine preemptively 
extracts from the blocks any records that do not comply with a set of formation rules 
and feeds a backlog registry, identifying cadastral entities requiring manual review. 
In total, 1,250 buildings distributed throughout the municipality, 0.08% of the total, 
are included in this registry. 
Visualization of the resulting models can be performed using different tools, such as 
QGIS with an appropriate plugin7, or viewers optimized for web browser 
presentation8. The model outputs preserve identifiers that can be used to update 
pre-existing databases. However, the workflow for delivering updated research 
results still requires interfacing with stakeholders from the City of Rio de Janeiro. 
While LoD 2 data consumption is considered well established, further improvements 
are expected in the automated quality assessment of the generated models. 
Likewise, it is recommended that a formal update process be established to address 
municipal-specific requirements.  

5​ Discussion of Results 
In total, after summing the features submitted to the software in the pre-processed 
blocks and excluding backlog features, 1,593,006 footprint polygons were 
processed. The number of successfully reconstructed buildings totals 1,428,248 
features (89.6% of the input dataset). The resulting features are multipart; that is, 
each feature in the final output may contain one or more parts corresponding to 
different planar faces of the roofs. Façades were disregarded in the LoD 2 results 
analysis. 

8 For example, the viewer available at https://ninja.cityjson.org 
7 Available at https://plugins.qgis.org/plugins/CityJSON-loader 

6 The final composition requires command line apps available at https://github.com/cityjson/cjseq and 
https://github.com/cityjson/cjio 
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Table 1: Distribution of buildings according to the number of roof facets 

Number of roof facets Total buildings Percentage (%) 

Undefined 164758 10.34 
1 411829 25.85 
2 364061 22.85 

3-5 478453 30.03 
6+ 173905 10.92 

Source: Authors (2025) 

 

Table 1 summarizes the total and percentage results according to the number of roof 
facets (roof faces) observed in the processed buildings. Buildings classified as 
“Undefined” correspond to those that could not be reconstructed in LoD 2. For such 
cases, the pre-existing LoD 1 features from the municipal cadastral database can 
still be retained to support applications. Common reasons for undefined cases 
include footprints with individual faces of very small areas, occluded regions, or 
classification errors in the point cloud. 
 

Table 2: Predominant roof form classification 

Roof classification Total 
buildings 

Percentage 
(%) 

RMS 

   Mean Standard deviation 

Simple horizontal 286317 17.97 0.207 0.351 
Multilevel 
horizontal 

255887 16.06 0.276 0.401 

Sloped 885461 55.58 0.235 0.351 
Unknown 165341 10.38 –  –  

Source: Authors (2025) 
 
The resulting features are categorized according to the predominant slope class of 
the segmented roof surfaces, as shown in Table 2. This taxonomy distinguishes 
buildings with simple horizontal roofs, those with multiple horizontal levels, and 
those predominantly composed of sloped faces. The “Unknown” class groups 
buildings that could not be represented in LoD 2 or could not be adequately 
classified. LoD 2 features focus on roof detailing and, as typically occurs with the 
routines implemented in roofer, façades result from extrusion. From a top-down 
perspective, it is difficult to determine façade setbacks or internal voids caused by 
cantilevered structures. Therefore, the conventional approach is to close prisms by 
adding vertical planes from roof edges down to an average ground level, omitting 
information about the presence of eaves. 
Roof shapes can also be described based on the adjacency relationships among 
their faces or facets. The simplest roof types, illustrated in Figure 6 both in 
perspective and plan view, include single-facet roofs (flat or shed), two-facet roofs 
(gable or decoupled), and roofs with three or more facets (half-hip, hip, pyramid, 
mansard, or complex). 
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Figure 6: Roof types in perspective and plan projection: 1) flat; 2) shed; 3) gable; 4) 

decoupled; 5) half-hip; 6) hip; 7) pyramid; 8) mansard; and 9) complex. 
Source: Adapted from (Mohajeri et al., 2018) 

 

 
Figure 7: Model visualization for a block near the Mangueira neighborhood: 1) 

Regional photograph from 2025; 2) Orthorectified mosaic from 2019; 3) LiDAR point 
cloud; 4) 3D building model visualization in QGIS; 5) LoD 2 vectorization; and 6) 

Footprints used as input for building individualization. 
Source: Authors (2025) 
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From the exploratory analysis, as illustrated in Figure 7, it is possible to observe that 
the model correctly identifies roof types, particularly for buildings with regular 
geometries. The adopted approach favors the handling of complex roofs, even when 
curved surfaces are approximated by multiple planar segments. However, the 
number of points required to define individual planes means that the total area of 
identifiable faces across the various roof levels is directly proportional to the quality 
of representation achievable in the resulting LoD 2 model. This is justified by the 
observation that small curved surfaces tend to be represented with low fidelity, 
whereas large free-form surfaces favor successful modeling. 
For quality assessment, a human expert was asked to label 2D features on the 2019 
mosaics. Information regarding the point clouds, their classification, and the 
processing results was omitted at this stage to avoid bias in the resulting ground 
truth. However, since the geometric correction of the mosaics is associated with the 
LiDAR point cloud used in the LoD 2 processing, the planimetric coordinates of 
features labeled on the mosaics are co-registered to the same reference system. 
Thus, using mosaics as vectorization bases, roof segment validation can be 
performed directly in 2D. Figure 8 shows the overlap between manually labeled 
region boundaries (pink dashed lines) and regions segmented by the automated 
process (blue) over the 2019 mosaic. 
 

 
Figure 8: Verification of roof segment overlap within the same reference frame. 

Source: Authors (2025) 
 
In total, 225 buildings were surveyed: 116 with roofs of up to five facets and 109 with 
complex roofs, distributed across five distinct regions of the municipality. Planar 
faces were counted as “Hits” when cross-correlation was observed, that is, 
whenever a segment from the resulting set could be associated with a single 
segment from the reference set. The green areas in Figure 9 exemplify segments 
with cross-correlation. “Errors” were counted for incorrectly segmented faces in 
cases of under-segmentation or over-segmentation. The red areas in items 1 and 2 
of Figure 9 illustrate such cases. “Omissions” correspond to the sum of faces 
without correspondence, occurring when portions of buildings were not represented 
in the automatically segmented regions or during manual labeling (illustrated by the 
yellow areas in Figure 9). 
 

 
Figure 9: Examples of errors and omissions observed during segment correlation: 1) 

Errors due to under-segmentation; 2) Error due to over-segmentation; and 3) 
Omissions. 

Source: Authors (2025) 
 
Table 3 summarizes the qualitative evaluation of the process in individualizing roof 
segments. Deviations in the planar boundaries of projected segments were not 
quantified in this study; however, the resulting dataset includes residual metrics (root 
mean square error, RMS, presented in Table 2) between the modeled roof faces and 
the input point clouds. 
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Table 3: Verification of the quality of individualizing isolated roof segments 

 Roofs with up to 5 segments Complex roofs 

Successes 266 847 
Errors 39 285 

Omissions  74 75 

All facets 379 1207 
Source: Authors (2025) 

 
Figure 10 presents a comparison between manual and automated roof 
segmentation. Mosaic excerpts and point cloud classification support the 
interpretation of observable differences between vector sets. Brown was used for 
ground, red for buildings, and green for tree vegetation. Points from the latter 
category are not used during processing but can assist in result interpretation. For 
buildings not manually labeled, the corresponding automatically generated features 
were omitted. Conversely, manually labeled features that could not be produced by 
the automated method are highlighted in the comparison. 
The most frequent modeling errors arise from points in the point clouds that were 
incorrectly classified, either as tree canopy or as structures present on rooftops. Low 
point density or occlusions generate gaps and may cause deviations along 
reconstructed planar edges. This supports the understanding that efforts to create 
new multimodal processes could better leverage the available information for the 
city of Rio de Janeiro. Additionally, auxiliary inputs, such as estimated base 
elevation derived from pre-existing cadastral records, could be incorporated to 
prevent gross errors when the buffer area for collecting ground points is insufficient 
in densely built-up areas. 
Thus, although the potential of pre-existing survey datasets has been demonstrated, 
gaps remain to be addressed in future studies. Further work may consider revising 
prior point cloud classification using semantic image information as a reference. 
Additional research directions include simultaneously updating the planimetric base, 
either during preprocessing or in parallel, so that more recent point clouds can be 
processed at lower cost. Finally, gaps observed in the results could be addressed by 
jointly modeling uncertainties, enabling the prioritization of features most relevant for 
human review. 
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Figure 10: Comparison between manual and automated roof segmentation. 

Source: Authors (2025) 

6​ Final remarks 
The proposed processing of the Rio de Janeiro municipal dataset using 2019 data to 
generate LoD 2 features proved to be feasible. Contributions of this work include 
large-scale data selection, compatibility adjustments to enable processing, and 
quality evaluation with identification of limiting factors, in addition to its novelty given 
that the applied algorithmic framework has been primarily tested in contexts distinct 
from those of cities in the Global South. 
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As conceived, the workflow does not address updates to built-up planar area or the 
detection of new buildings. However, nothing prevents its extension with a 
preliminary stage for such purposes. Similarly, the Rio de Janeiro municipal 
cadastre includes base and top elevation attributes linked to building footprints, 
which could be incorporated as inputs in densely built-up regions. 
It is therefore concluded that the potential for leveraging pre-existing survey data 
has been demonstrated. Nonetheless, complementary investigations into point cloud 
classification methods are recommended, either to refine input data or to explore 
updates to the processing approach for multimodal inputs.  
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