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            Resumen
          

          
            Detectar los cambios en las áreas naturales es esencial para su conservación. Este estudio evaluó la deforestación asociada a la urbanización en Barra da Tijuca (Río de Janeiro), utilizando el algoritmo LandTrendr en series temporales de imágenes Landsat (1985-2024). El método alcanzó una alta precisión, con una exactitud global de 0,92, una puntuación F1 de 0,91 y un índice Kappa de 0,83. Los resultados indicaron que el periodo de mayor cambio se produjo entre 1985 y 1990, con 22,5 km² alterados, un valor tres veces superior al del periodo 2010-2015 (7,4 km²). Estas transformaciones están asociadas a la intensa expansión inmobiliaria y al desarrollo urbano.
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            Resumo
          

          
            A detecção de mudanças em áreas naturais é essencial para sua preservação. Este estudo avaliou o desflorestamento associado à urbanização na Barra da Tijuca (RJ), utilizando o algoritmo LandTrendr em séries temporais de imagens Landsat (1985 - 2024). O método alcançou alta precisão, com acurácia global de 0,92, F1-score de 0,91 e Kappa de 0,83. Os resultados indicaram que o período de maior mudança ocorreu entre 1985 e 1990, com 22,5 km² alterados, valor três vezes superior ao período de 2010-2015 (7,4 km²). Estas transformações estão associadas à intensa expansão imobiliária e ao desenvolvimento urbano.
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            Abstract
          

          
            Detecting changes in natural areas is essential for their preservation. This study evaluated deforestation associated with urbanization in Barra da Tijuca (Rio de Janeiro), using the LandTrendr algorithm on time series of Landsat images (1985-2024). The method achieved high precision, with an overall accuracy of 0.92, an F1-score of 0.91, and a Kappa of 0.83. The results indicated that the period of greatest change occurred between 1985 and 1990, with 22.5 km² altered, a value three times higher than the period of 2010-2015 (7.4 km²). These transformations are associated with intense real estate expansion and urban development.
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          Introducción
        

      

    

    
      La Región Administrativa XXIV – Barra da Tijuca, Río de Janeiro (RJ), se caracteriza por su alta densidad poblacional y su intensa urbanización. El desarrollo de esta región se intensificó en la década de 1970, impulsado por el Plan Piloto de Lúcio Costa (1969), que tenía como objetivo transformarla en un gran centro urbano. El proyecto incentivó la construcción de grandes condominios y la separación de sectores urbanos, tal como destaca Mendonça (2023). De acuerdo con Abreu (2006), la combinación de estas características atrajo emprendimientos inmobiliarios y consolidó a Barra da Tijuca como una región de gran valorización y referencia para la población de altos ingresos, alcanzando en 2010 el tercer mayor Índice de Desarrollo Humano Municipal (IDH-M) de la ciudad.
    

    
      A pesar del desarrollo acelerado, el monitoreo de la región es imprescindible, dada la presencia de importantes Unidades de Conservación y Áreas de Protección Ambiental (APA), tales como el Parque Estatal de Pedra Branca, la APA de Pedra Branca y el Parque Nacional de Tijuca, que albergan remanentes de la Mata Atlántica, como bosques ombrófilos, restingas y manglares. Este bioma es considerado prioritario para la conservación de la biodiversidad mundial, según lo descrito por Mazzurana (2016). No obstante, existen evidencias de una presión creciente sobre estas áreas protegidas. Sousa (2019) describe el debate sobre los impactos ambientales derivados de la deforestación y de las ocupaciones irregulares, tanto por poblaciones de bajos ingresos como por emprendimientos de alto nivel.
    

    
      La dinámica de ocupación irregular se ve agravada por la actuación de grupos criminales, como las milicias, en la promoción de construcciones ilegales y el lavado de dinero, hechos corroborados por reportajes locales como el de Peixoto y Nascimento (2023). Sousa (2019) destaca que, en muchos casos, la actuación de estos grupos responde a las señales del mercado inmobiliario con mayor rapidez que el poder público. Estas intervenciones, sumadas a la expansión de comunidades periféricas en laderas y al desarrollo inmobiliario formal, resultan en la supresión de la vegetación y en riesgos geológicos. Adicionalmente, el vertido irregular de residuos impacta la integridad ecológica de los manglares, a pesar de la resiliencia natural de este ecosistema, como señala Soffiati (2024).
    

    
      Ante este desafío socioambiental, es fundamental comprender de forma cuantitativa la dinámica de esta expansión para apoyar la gestión territorial (Tahir 
      et al
      ., 2025). El análisis de series temporales de imágenes de teledetección es una herramienta robusta para la observación de diversos fenómenos que alteran el uso y la cobertura del suelo, ya sea por dinámicas ambientales o por intervenciones humanas, como la deforestación y la urbanización (Zhu; Woodcock, 2014; Gómez 
      et al
      ., 2016). Este análisis permite una mayor comprensión de los fenómenos, factores e impactos de estos cambios. Para el análisis de grandes volúmenes de datos de teledetección (Big EO Data), el modelo de arreglo tridimensional es el más apropiado y permite la clasificación temporal de dos formas: clasificando cada serie temporal individualmente y, posteriormente, uniendo los resultados en el espacio (enfoque que sigue el paradigma Time-First, priorizando el tiempo y luego el espacio); o clasificando cada imagen por separado y, posteriormente, comparando las clasificaciones resultantes a lo largo del tiempo (enfoque que sigue el paradigma Space-First, priorizando el espacio y luego el tiempo) (Vinhas 
      et al.
      , 2016). Para Maus 
      et al
      . (2016), un análisis de series temporales puede combinar ambas clasificaciones temporales, lo que fue corroborado por Vinhas 
      et al.
       (2016).
    

    
      Este estudio utiliza el algoritmo LandTrendr (LT) — Landsat-based Detection of Trends in Disturbance and Recovery — para identificar y caracterizar los períodos de cambio en las áreas naturalmente vegetadas y medir la magnitud de las alteraciones ocurridas entre los años 1984 y 2024. LT es una herramienta eficaz de segmentación espectro-temporal para la detección de patrones de cambio (Kennedy; Yang; Cohen, 2010). Aunque fue desarrollado para el monitoreo forestal, el algoritmo ha sido ampliamente utilizado en análisis urbanos. Yan y Wang (2021) utilizaron siete bandas/índices en LT para obtener información sobre el cambio urbano en Karachi (Pakistán) entre 2000 y 2020. Consideraron el valor mayoritario de la información como resultado, en un enfoque similar al método de votación mayoritaria, lo que, según los autores, permite superar de manera eficaz la incertidumbre en la extracción de información sobre la expansión urbana en comparación con el uso de una sola banda/índice. Hu 
      et al
      . (2024) utilizaron la banda del infrarrojo de onda corta (SWIR) en LT para extraer el tiempo de construcción de edificios a partir de datos mensuales de la serie temporal Landsat. Este enfoque se aplicó para la detección de cambios en la construcción, demolición y reconstrucción de edificios en la ciudad de Pekín (China) entre 1990 y 2020. Mugiraneza, Nascetti y Ban (2020) tuvieron como objetivo el monitoreo continuo de las trayectorias de cambio en la cobertura del suelo urbano. Para ello, combinaron los resultados de LT, que utilizó múltiples índices, para reconstruir mapas densos de cobertura del suelo anuales para el período de 1990 a 2019.
    

    
      Considerando este contexto, el objetivo del presente estudio consistió en analizar los cambios en el uso y la cobertura del suelo en Barra da Tijuca entre los años 1984 y 2024 mediante el algoritmo LandTrendr. La investigación busca cuantificar y mapear la pérdida de áreas vegetadas como consecuencia de la expansión urbana, validando los resultados mediante una matriz de error y métricas de exactitud, con el fin de garantizar la precisión en la detección de los cambios cartografiados.
    

    
      	
        Material e métodos
      

    

    
      2.1 Área de Estudio
    

    
      La Región Administrativa XXIV – Barra da Tijuca (Figura 1) corresponde a un área de aproximadamente 165 km², ubicada en el Área de Planificación 4 (AP4) – Zona Suroeste del municipio de Río de Janeiro (RJ). Este bioma, debido al intenso proceso de urbanización de los grandes centros urbanos — presentes en su mayoría en las regiones litorales brasileñas — ha tenido su territorio devastado, siendo el bioma brasileño que más ha sufrido bajo la influencia de la urbanización. Cabe destacar que más del 60% de la población brasileña residía en el dominio de este bioma en el año 2016, cuando representaba cerca del 7% de sus bosques originales, según lo presentado por Mazzurana (2016). A nivel local, Barra da Tijuca es la octava región más poblada del municipio, de acuerdo con los datos preliminares del Censo de 2022 (Prefeitura da Cidade do Rio de Janeiro, 2024), y enfrenta de forma recurrente problemas relacionados con la urbanización, como la deforestación y la ocupación de viviendas irregulares en áreas de protección ambiental, por parte de poblaciones de todos los niveles de renta, como destaca Sousa (2018). El proceso de urbanización tardío, iniciado poco antes de la disponibilidad de los datos Landsat, permitió la elección de esta área para la observación del avance de las áreas antrópicas sobre las regiones naturales. A pesar de la limitada extensión territorial, la aplicación del algoritmo demostró ser viable dada la resolución espacial de 30 metros de los datos Landsat, ya que la herramienta fue desarrollada específicamente para operar con estos sensores. Además, el algoritmo ha sido ampliamente empleado en el análisis de trayectorias de cambio en áreas urbanas. 
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      Figura 1: Área de Estudo - RA da Barra da Tijuca, Rio de Janeiro (RJ)
    

    
      Fuente: Los autores (2025)
    

    
       
    

    
      2.2 Materiales
    

    
      El algoritmo 
      LandTrendr
       (
      Landsat-based Detection of Trends in Disturbance and Recovery
      ), desarrollado por Kennedy 
      et al
      . (2010) e implementado en Google Earth Engine (LT-GEE), es un enfoque que permite un análisis más amplio y rápido que el basado en una imagen actual aislada (Kennedy 
      et al
      ., 2018). El objetivo general de 
      LandTrendr 
      es caracterizar una trayectoria temporal de valores de datos utilizando una secuencia de segmentos lineales conectados, delimitados por puntos de quiebre o nodos. El algoritmo trabaja con un intervalo de análisis de una imagen por año, y corresponde al usuario la parametrización para extraer la mejor información de acuerdo con el objetivo, variando según la banda espectral y/o el índice utilizado.
    

    
      Según Câmara 
      et al
      . (2016), el enfoque basado en trayectorias representa un nuevo paradigma en el estudio de los cambios, destacando el tiempo como la variable central, en lugar del espacio, como consideran muchos mapeos. Esto se conoce como “
      time first vs. space first
      ”, donde la respuesta temporal se convierte en el elemento central en la identificación de determinados fenómenos (Weckmüller; Vicens, 2018).
    

    
      Los datos temporales se analizan antes que los datos espaciales, y se prioriza el análisis de la serie temporal. El LT fue desarrollado originalmente para el monitoreo de cambios forestales, como la deforestación, los incendios y la regeneración, e incluye actualmente nuevos índices espectrales, como el NDSI (
      Normalized Difference Snow Index
      ) y el NDMI (
      Normalized Difference Moisture Index
      ). El objetivo de esta herramienta es mapear los cambios en cada píxel a lo largo del tiempo, definiendo eventos de cambio cuando estos ocurren. Los eventos mapeados generan bandas como “año del cambio”, “magnitud del cambio”, “valor previo al cambio” y “duración del cambio”. Este estudio se centró en el uso de las bandas “magnitud del cambio”, “año del cambio” y “duración del cambio”.
    

    
      Las imágenes Landsat se obtuvieron de forma gratuita del USGS (
      United States Geological Survey
      ), a través del catálogo de imágenes de GEE (
      Google Earth Engine Data Catalog
      ). Se utilizaron los productos 
      Landsat Surface Reflectance Tier 1
      , con una resolución espacial de 30 metros y una resolución temporal de 16 días, para el análisis de una serie temporal de imágenes de 40 años. Aunque los sensores TM (
      Thematic  Mapper
      ), a bordo del satélite Landsat 5, y ETM+ (
      Enhanced Thematic Mapper Plus
      ), a bordo del satélite Landsat 7, son diferentes, operan en las mismas bandas espectrales, lo que asegura la integración de sus datos. El sensor OLI (
      Operational Land Imager
      ), a bordo del satélite Landsat 8, cuya operación comenzó en 2013 y que también está integrado en LT, opera en más bandas espectrales que sus predecesores, aunque en regiones del espectro comunes a estos. Al tratarse de un método basado en series temporales, es necesario que los datos estén normalizados en cuanto a las diferencias entre sensores y libres de ruidos atmosféricos (como nubes y sombras), garantizando la consistencia de los datos a lo largo de los años. GEE proporciona los datos de reflectancia de superficie de los sensores Landsat ya con corrección geométrica y atmosférica, normalizados en su catálogo.
    

    
      El algoritmo fue implementado en la plataforma GEE, como lo propusieron Kennedy 
      et al.
       (2018). Su ejecución requiere la definición de tres grupos de parámetros: parámetros de la colección, parámetros de ejecución y parámetros de cambio (Figura 2). El índice utilizado en el análisis de la serie temporal para la observación de áreas naturalmente vegetadas que sufrieron supresión fue el Índice de Vegetación por Diferencia Normalizada (
      Normalized Difference Vegetation Index 
      NDVI – Ecuación 1).
    

    
      
    

    
      
               
       
                                             (1)
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      Figura 2: Parámetros de entrada del algoritmo LT-GEE
    

    
      Fuente: Los autores (2025)
    

    
       
    

    
      2.2.1 Parametrización del LT
    

    
      Como parámetro de la colección se utilizó el índice NDVI. Es importante resaltar que LandTrendr puede aplicarse a diferentes métricas espectrales, incluidas bandas espectrales individuales y otros índices espectrales, como, por ejemplo, el índice NBR (Normalized Burn Ratio o Índice de Quemado Normalizado). La selección de este parámetro es determinante para la interpretación del cambio detectado. Por ejemplo, mientras que en el uso del NDVI una disminución en el valor del píxel implica la sustitución o supresión de la vegetación, en bandas como el infrarrojo de onda corta (SWIR) una disminución indicaría el proceso inverso (como recuperación de biomasa, pérdida de área construida o de suelo expuesto), ya que las superficies no vegetadas tienden a presentar mayor reflectancia en esta longitud de onda. La elección de este índice se justifica por su importancia en el análisis de una región naturalmente cubierta por la Mata Atlántica. Además, históricamente es uno de los índices más utilizados en análisis de Teledetección, debido a su formulación simple y a la disponibilidad de largas series temporales satelitales, lo que permite el monitoreo de la fenología, la productividad (biomasa/producción primaria), la detección de sequías y degradación, la evaluación agrícola y los estudios ecológicos a gran escala (Rouse 
      et al
      ., 1974; Ponzoni; Shimabukuro, 2010; Huang 
      et al
      ., 2021).
    

    
      En el contexto del área de estudio, las variaciones en los valores de NDVI, aunque no representan directamente el impacto de la urbanización, pueden asociarse a su dinámica, ya que su variación a lo largo del tiempo puede reflejar cambios en los elementos de la superficie terrestre, como la cobertura vegetal, el suelo expuesto, los cuerpos de agua o las áreas construidas. Así, reducciones persistentes en los valores de NDVI pueden indicar procesos de sustitución de la vegetación por superficies antrópicas.
    

    
      Adicionalmente, se aplicó un filtro estacional seleccionando únicamente imágenes adquiridas entre mayo y junio. Este intervalo, que corresponde al final de la estación de transición del otoño y precede al invierno, tiende a presentar condiciones más secas y frías, reduciendo la inestabilidad atmosférica y, en consecuencia, la ocurrencia de nubes, lo que contribuye a disminuir el ruido en la serie temporal. Aunque el algoritmo permite trabajar con diversos períodos a lo largo del año, la elección de este recorte estacional tiene como objetivo garantizar una mayor consistencia espectral entre los años analizados, con el fin de evitar algunas limitaciones, como el riesgo de generar áreas sin datos (No-Data) debido a la presencia eventual de sombras, nubes u otros ruidos en las pocas imágenes disponibles para este período.
    

    
      En los parámetros de ejecución se definió un máximo de tres segmentos, con el objetivo de detectar únicamente cambios que permanecieron. En esta configuración, el período de estabilidad previo al cambio se define como un segmento, la transición del cambio como un segundo segmento, y el último segmento representa el período posterior al cambio, en el cual el índice se mantiene estable y en un nivel inferior al anterior. Esta configuración permite caracterizar transiciones como, por ejemplo, un área con vegetación que se vuelve deforestada y, posteriormente, se transforma en suelo expuesto preparado para un loteo, a partir del cambio registrado en el año 2000. Esto facilita la interpretación de los procesos de transformación observados. El parámetro de “mínimo de 6 observaciones” destaca la necesidad de que el modelo analice los resultados al menos seis veces para realizar ajustes en sus salidas. Como el objetivo del estudio fue únicamente observar áreas que sufrieron cambios relacionados con la pérdida de vegetación para convertirse en otro uso, se aplicó un parámetro para evitar la detección de recuperación del índice en un período de un año; es decir, si hubiera recuperación del índice en este período, el evento no sería clasificado como un cambio.
    

    
      La segmentación del algoritmo se realiza dividiendo la trayectoria espectral de cada píxel a lo largo del tiempo. El LT divide esta trayectoria en segmentos lineales, que representan fases de estabilidad o momentos de cambio. Los períodos prolongados de estabilidad se caracterizan por segmentos de baja pendiente, mientras que las perturbaciones abruptas, como la deforestación, generan segmentos cortos y empinados, reflejando variaciones expresivas en los valores espectrales de los píxeles, como se muestra en la Figura 3.
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      Figura 3. Segmentación de series temporales de píxeles de LandTrendr. Los datos de la imagen se reducen a una sola banda o índice espectral y luego se dividen en una serie de segmentos de líneas rectas mediante la identificación de puntos de interrupción (vértices).
    

    
      Fuente: Adaptado de la Guía LT-GEE (disponible en: https://emapr.github.io/LT-GEE/landtrendr.html)
    

    
      
    

    
      La magnitud del cambio se mide mediante la comparación entre los valores del índice utilizado antes y después de la ocurrencia de la alteración. Por ejemplo, un píxel que presentaba NDVI = 0,8 (bosque) y pasó a NDVI = −0,1 (suelo expuesto, agua, etc.) presenta una magnitud de cambio de −0,9.
    

    
      En esta investigación, se definió como cambio una variación negativa mínima de 0,1, siempre que no hubiera recuperación del índice en un período de un año. Como el LT almacena el valor absoluto del delta espectral, la alteración del ejemplo (un delta de 0,9) se presenta con una magnitud de 900, lo que indica una fuerte pérdida de la característica natural. Los parámetros de cambio utilizados en el modelo se configuraron para observar ocurrencias que presentaran únicamente pérdida de vegetación. Estas ocurrencias solo se consideraron si su magnitud (diferencia entre el valor del índice previo al cambio y el valor posterior al cambio) era mayor que 100.
    

    
      A partir de la modelización y los ajustes de parámetros en el código, el algoritmo LT-GEE proporcionó una imagen que contiene información sobre la pérdida de vegetación, con las siguientes bandas: (1) Año de detección del cambio; (2) Magnitud del cambio; (3) Duración del cambio; (4) Valor espectral del evento previo al cambio; (5) Tasa de cambio espectral para el evento (magnitud/duración); y (6) DSNR (Relación señal-ruido de la perturbación) (Cohen 
      et al
      ., 2018). Para el presente trabajo se consideraron los siguientes resultados: “Año de detección del cambio”, “Magnitud del cambio” y “Duración del cambio”. Estos datos se presentan en formato matricial (rejilla de píxeles) y contienen información sobre el año, la magnitud y la duración del cambio. El LT también permite observar la respuesta del índice NDVI de píxeles seleccionados a lo largo de la serie temporal mediante gráficos.
    

    
      2.3 Validación
    

    
      La validación de los resultados provenientes del LT se llevó a cabo en dos etapas complementarias. En primer lugar, se utilizó la herramienta “Puntos aleatorios en polígonos” del software de geoprocesamiento QGIS para generar 202 puntos aleatorios, divididos equitativamente (101 puntos) entre las clases ‘Cambio’ y ‘No Cambio’. Estos puntos sirvieron como base para la elaboración de la matriz de error, el cálculo del coeficiente Kappa (que indica el grado de concordancia del modelo; Cohen, 1960) y el cálculo de las métricas de exactitud, validando los resultados obtenidos con la modelización del algoritmo.
    

    
      
    

    
      El número total de puntos se definió con base en recomendaciones metodológicas para la validación de mapeos de cambio, que sugieren muestras entre 150 y 250 puntos para garantizar la robustez estadística sin comprometer la viabilidad operativa (Congalton; Green, 2019). El muestreo aleatorio dentro de cada clase asegura la independencia de las observaciones y permite inferencias válidas sobre la exactitud global del modelo.
    

    
      Posteriormente, para el análisis del cambio, se utilizó un código en GEE, el Time Series Inspector (Yin 
      et al
      ., 2020), que permitió la observación paralela de imágenes de los años 1985, 2010 y 2024, así como de los gráficos de la serie temporal para el índice NDVI. Tras este análisis, cada punto fue interpretado como ‘Cambio’ o ‘No Cambio’, de acuerdo con la referencia observada (realidad). Finalmente, se elaboró una matriz de error y se calcularon las exactitudes e indicadores para la validación de la clasificación.
    

    
      	
        Resultados
      

    

    
      Los resultados de la segmentación ejecutada por el algoritmo 
      LandTrendr 
      (LT) generaron los mapas de las bandas “Magnitud del Cambio” (Figura 4), “Año de Detección del Cambio” (Figura 5) y “Duración del Cambio” (Figura 6). Para el mapa de magnitud del cambio, las clases se dividieron en cinco intervalos; la primera clase (100–200) se definió para abarcar la mayor proporción de las magnitudes observadas, mientras que las demás clases siguieron intervalos de 200 (Figura 4). Para el mapa del período de ocurrencia del cambio, el intervalo de 40 años se subdividió en ocho clases regulares de cinco años (Figura 5).
    

    
      El análisis de la magnitud (Figura 4) muestra que las clases de menor impacto (100–200 y 200–400) fueron predominantes, representando el 46,7% y el 38% de las alteraciones, respectivamente. Los cambios de alta magnitud (800–961) fueron raros, correspondiendo a solo el 0,08% de los eventos.
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      Figura 4: Mapa de magnitud del cambio – Región Administrativa XXIV (Barra da Tijuca, Río de Janeiro, RJ), de 1984 a 2024.
    

    
      Fuente: Autores, con datos del U.S. Geological Survey (USGS) y Google Earth Engine.
    

    
      
    

    
      
    

    
      El análisis temporal (Figura 5) identificó que el período de mayor transformación ocurrió entre 1985 y 1990, cuando se alteraron 22,5 km², lo que equivale al 40,65% de todo el cambio detectado. Este valor es aproximadamente tres veces superior al del segundo período con mayor ocurrencia de cambios (2010–2015), que registró 7,4 km² de cambio (13,33% del total). El período 1985–1990 también concentró la mayor proporción de la suma de las magnitudes de cambio (25,2% del total), seguido por 2010–2015 (16%).
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      Figura 5: Mapa del período del cambio – Región Administrativa XXIV (Barra da Tijuca, Río de Janeiro, RJ), de 1984 a 2024.
    

    
      Fuente: Autores, con datos del U.S. Geological Survey (USGS) y Google Earth Engine.
    

    
      
    

    
      El análisis de la duración de los cambios para el área de Barra da Tijuca, visualizado en el mapeo de la Figura 6, indicó patrones complejos. Se observó una concentración de cambios con duraciones entre 1 y 9 años, lo que puede representar eventos de supresión de vegetación que se completan y se estabilizan en un nuevo tipo de cobertura (como suelo expuesto o el inicio de una construcción) dentro de este intervalo.
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      Figura 6: Mapa de duración del cambio – Región Administrativa XXIV (Barra da Tijuca, Río de Janeiro, RJ), de 1984 a 2024.
    

    
      Fuente: Autores, con datos del U.S. Geological Survey (USGS) y Google Earth Engine.
    

    
      
    

    
      Sin embargo, se destacó un segundo patrón con un mayor número de cambios, con duraciones muy largas, superiores a 34 años. Los datos sugieren que los cambios iniciados en el principal período de transformación (1985–1990) permanecen “activos” hasta la actualidad. En lugar de interpretarse como eventos abruptos y puntuales de deforestación, el algoritmo detecta estos píxeles como un proceso gradual y continuo de supresión de la vegetación. En estos casos, el índice NDVI probablemente nunca se estabilizó en un nuevo nivel bajo, continuando su disminución lenta a lo largo de toda la serie temporal analizada.
    

    
      Tras el análisis y la clasificación de los puntos de validación, se generó la matriz de error (Tabla 1). El análisis de esta matriz, junto con el índice Kappa, es esencial para identificar las principales fuentes de error del modelo, que pueden ser generadas tanto por el investigador como por el algoritmo, y es necesario para evaluar la calidad del mapeo (Zebende; Weckmüller; Vicens, 2020).
    

    
      Los errores de comisión y omisión resultantes de la validación del modelo fueron de 0,12 y 0,05, respectivamente. El error de comisión (12%), obtenido a partir de la relación entre los falsos positivos (12) y el total de puntos clasificados como cambio (101), indica que el algoritmo clasificó incorrectamente algunas áreas como “Cambio”. La principal causa identificada para estos errores fue la influencia topográfica. Como señalan Ferraz y Vicens (2025), en regiones de ladera, la influencia de las sombras en los píxeles provoca una variación irregular del NDVI en la serie temporal, lo que dificulta la interpretación visual y lleva al modelo a detectar cambios inexistentes, como se muestra en la Figura 7. Además de este factor, también se observaron algunas regiones de afloramientos rocosos clasificadas erróneamente como cambio, probablemente por el mismo efecto de sombreado. Por su parte, el error de omisión (5%), calculado a partir de la relación entre los falsos negativos (5) y el total de cambios reales de referencia (94), se concentró en algunas regiones de manglar. En estos lugares, la detección de cambios reales se vio dificultada por la compleja firma espectral, influenciada tanto por la mezcla de vegetación (restinga y manglar) como por la condición hídrica de las lagunas, como se muestra en la Figura 8. Se infiere que el algoritmo no logró detectar estos cambios reales debido a la lenta regeneración de la vegetación en estas áreas, que puede no haber sido capturada por los parámetros definidos en el modelo.
    

    
      
    

    
      Tabla 1: Matriz de error, cambio (positivo) y no cambio (negativo), y métricas aplicadas
    

    
      
        	
          
            
          

          
            Referencia
          

        
        	
          
            LandTrendr
          

        
      

      
        	
          
            Cambio
          

        
        	
          
            Sin cambio
          

        
        	
          
            Total
          

        
      

      
        	
          
            Cambio
          

        
        	
          
            89
          

        
        	
          
            5
          

        
        	
          
            94
          

        
      

      
        	
          
            Sin cambio
          

        
        	
          
            12
          

        
        	
          
            96
          

        
        	
          
            108
          

        
      

      
        	
          
            Total
          

        
        	
          
            101
          

        
        	
          
            101
          

        
        	
          
            202
          

        
      

      
        	
          
            Acuracia global
          

        
        	
          
            0,92
          

        
      

      
        	
          
            Kappa
          

        
        	
          
            0,83
          

        
      

      
        	
          
            F1-score
          

        
        	
          
            0,91
          

        
      

      
        	
          
            Acuracia del usuario
          

        
        	
          
            0,88
          

        
        	
          
            0,12
          

        
      

      
        	
          
            Acuracia del productor
          

        
        	
          
            0,95
          

        
        	
          
            0,05
          

        
      

    

    
      Fuente: Los autores (2025)
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      Figura 7: Ejemplo de Error de Comisión (Falso Positivo). (a) Imagen en color verdadero con el punto de referencia. (b) Clasificación del LT. (c) Serie histórica del índice NDVI para Landsat 4, 5, 7 y 8. (d) Serie temporal de la clasificación del LT, con una caída en el segundo segmento.
    

    
      Fuente: Los autores (2025)
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      Figura 8: Ejemplo de Error de Omisión (Falso Negativo). (a) Imagen en color verdadero con el punto de referencia. (b) Clasificación del LT. (c) Serie histórica del índice NDVI para Landsat 4, 5, 7 y 8. (d) Serie temporal de la clasificación del LT, con un único segmento.
    

    
      Fuente: Los autores (2025)
    

    
      
    

    
      
    

    
      	
        Discusión
      

    

    
      La aplicación de 
      LandTrendr 
      permitió identificar patrones de variación del NDVI a lo largo de la serie temporal y localizar áreas con cambios en la cobertura vegetal. Dado que la magnitud corresponde a la diferencia entre el valor del índice al inicio y al final de un segmento de cambio, valores entre 100 y 200, equivalentes a variaciones de aproximadamente 0,1 a 0,2 unidades de NDVI, no representan necesariamente una supresión efectiva y robusta de la vegetación. Tales variaciones pueden reflejar únicamente cambios sutiles en el vigor vegetativo o la presencia de formaciones más bajas y dispersas. Por esta razón, el estudio adoptó deliberadamente un umbral más conservador, a fin de no excluir estas transiciones más suaves. Además, el análisis del comportamiento espectral de la curva de los píxeles a lo largo del tiempo es fundamental para interpretar adecuadamente las dinámicas observadas y distinguir variaciones naturales de procesos de cambio real de la cobertura vegetal.
    

    
      Mientras que Yan y Wang (2021) adoptaron un enfoque de votación mayoritaria con el uso de siete bandas/índices para superar incertidumbres en la malla urbana de Karachi, los resultados de este estudio demuestran que, para el objetivo específico de detectar la supresión de la vegetación en Barra da Tijuca, el uso aislado del índice NDVI presentó un desempeño satisfactorio (Exactitud Global de 0,92). Esto sugiere que, en áreas con transiciones bien definidas entre bosque y ciudad, modelos menos complejos pueden ser tan eficientes como enfoques multiíndice.
    

    
      En el estudio se consideraron dos umbrales de detección: el área mínima de análisis y el umbral de magnitud del cambio. Dado que se utilizaron imágenes Landsat, el umbral de área mínima de análisis está representado por píxeles de 900 m², considerando la resolución espacial de 30 m de esta serie, es decir, cada píxel mide 30 m × 30 m. El umbral de magnitud del cambio define la variación mínima del índice de vegetación NDVI necesaria para ser considerada una alteración relevante. Cambios que cubren un área mucho menor que la del píxel (subpíxel) pueden no ser detectados, ya que su contribución espectral puede no ser representativa a esta resolución. En consecuencia, esta escala puede no ser representativa para cambios “finos”, como la expansión de asentamientos informales en laderas o alteraciones dentro de condominios (por ejemplo, la eliminación de jardines para la ampliación de viviendas). Los cambios en intervalos menores a un año tampoco son detectados por el modelo, dado que estas son análisis de alteraciones que duran más de un año y, en este estudio, sin recuperación del índice durante un período de al menos un año.
    

    
      Esta limitación de escala es un desafío común en estudios basados en Landsat, diferenciándose de enfoques que utilizan datos mensuales para detectar ciclos rápidos de construcción y demolición, como el propuesto por Hu 
      et al
      . (2024) en Pekín. A diferencia del estudio chino, que se centró en la dinámica intraurbana de los edificios, el presente análisis priorizó la conversión definitiva de áreas naturales en áreas antrópicas, para lo cual la resolución temporal anual resultó adecuada.
    

    
      El análisis de la expansión urbana en la Región Administrativa XXIV – Barra da Tijuca, entre 1984 y 2024 mediante LT reveló un crecimiento acentuado. Este se observó principalmente en el período de 1985 a 1990, que correspondió al 40,65% del área total de los cambios clasificados por el algoritmo, impulsado por la intensa actividad inmobiliaria en la región. En la década de 1980, el Área de Planificación 4 (AP4), que abarca los barrios de Barra da Tijuca, Jacarepaguá y Cidade de Deus, presentó una tasa de crecimiento anual de la población residente en favelas muy superior a la observada en las áreas ya consolidadas (AP1, AP2 y AP3), quedando solo por detrás de la AP5, que incluye barrios como Campo Grande, Bangu y Guaratiba (Lago, 1999). En 2004, la AP4 era el área de mayor crecimiento de la ciudad y representaba el vector de expansión urbana, desde la Zona Sur hacia Barra da Tijuca (Camarano 
      et al
      ., 2004).
    

    
      En el período de 2010 a 2015, el segundo con mayor proporción de área alterada según los resultados, esta proporción descendió al 13,33%. Este hecho está relacionado con los preparativos para los Juegos Olímpicos de 2016 celebrados en la ciudad de Río de Janeiro, lo que indica una desaceleración de la urbanización en esta región. Las principales alteraciones de este período fueron las obras de saneamiento básico en las lagunas de la región, la creación del Campo Olímpico de Golf (inaugurado en 2015) y la construcción del Grand Hyatt Hotel Rio de Janeiro (inaugurado en 2016).
    

    
      Aunque 
      LandTrendr 
      es eficaz para detectar estas pérdidas, la confusión espectral generada por la topografía sigue siendo un desafío. La identificación de falsos positivos en áreas de sombra de ladera en este estudio refuerza las observaciones de Ferraz y Vicens (2025) sobre la influencia del relieve en la variabilidad del NDVI, lo que indica que la aplicación del algoritmo en regiones de relieve accidentado, comunes en Río de Janeiro, requiere una validación cuidadosa de las áreas sombreadas.
    

    
      El análisis de la serie temporal de los sensores Landsat demostró que el período de 1985 a 1990 fue el más impactante, con un área total de alteración de aproximadamente 22,5 km², siendo este resultado reflejo de la intensa expansión inmobiliaria en la región. Aunque el enfoque difiere de los estudios previamente citados para el análisis de áreas urbanas con LT, la segmentación temporal del algoritmo también fue capaz de detectar la expansión urbana con base en la degradación de las áreas vegetadas, observada a través del índice de vegetación NDVI. Esto se debe a la característica natural de la región, que en sus condiciones originales pertenecía al bioma de la Mata Atlántica, un bosque tropical. 
    

    
      	
        Conclusión
      

    

    
      El presente estudio demostró la eficacia del algoritmo para detectar la evolución de las áreas antrópicas, tanto en regiones ya urbanizadas como periféricas, al utilizar la pérdida de áreas naturalmente vegetadas como enfoque metodológico. Esto evidenció la pérdida de dichas áreas vegetadas debido a la urbanización.
    

    
      La segmentación temporal se mostró como una herramienta poderosa para el análisis de las trayectorias individuales de cada píxel y para la identificación de cambios sutiles a lo largo del tiempo.
    

    
      Los índices de exactitud demuestran la aplicabilidad del modelo en estudios futuros bajo condiciones similares y sugieren la revisión del valor mínimo de magnitud para una modelización que detecte de manera más eficaz las áreas construidas. Además, surge como posibilidad la implementación del índice de área construida NDBI (Normalized Difference Built-up Index) para su correlación con los datos resultantes de la modelización con el índice NDVI.
    

    
      Con una exactitud global de 0,92, un F1-score de 0,91 y un valor Kappa de 0,83, el estudio demostró la robustez del algoritmo en la identificación de patrones de cambio, señalando, no obstante, la necesidad de reevaluar los parámetros de clasificación para identificar las áreas construidas como consecuencia de áreas deforestadas.
    

    
      Al analizar los mapas, fue posible identificar patrones de forma coherentes con áreas construidas, lo que corrobora la posibilidad de utilizar este enfoque para identificar el avance de las áreas urbanas en regiones previamente vegetadas.
    

    
      La validación de la clasificación mediante la matriz de error y el índice Kappa refuerza la solidez de los resultados y sugiere la aplicabilidad del LT en otros contextos urbanos. De este modo, se recomienda el uso de esta herramienta para el monitoreo de cambios ambientales, ya que puede servir de apoyo a estrategias de políticas públicas orientadas a la conservación, la preservación ambiental y el desarrollo sostenible en esta región.
    

    
      Como tema para investigaciones futuras, se recomienda la implementación del índice NDBI directamente en el algoritmo. El objetivo sería permitir el análisis de correlaciones entre los resultados obtenidos en esta clasificación (basada en NDVI) y aquellos derivados del índice específico para áreas construidas (NDBI). Adicionalmente, se recomienda analizar correlaciones mediante el cruce de los datos obtenidos con series históricas de datos socioeconómicos, demográficos o de planificación urbana para la región.
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